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Large phylogeny estimation is a combinatorial optimization prob-
lem that no future computer will ever be able to solve exactly in
practical computing time. The difficulty of the problem is amplified
by the need to use complex evolutionary models and large taxon
samplings. Hence, many heuristic approaches have been devel-
oped, with varying degrees of success. Here, we report on a
heuristic approach, the metapopulation genetic algorithm, involv-
ing several populations of trees that are forced to cooperate in the
search for the optimal tree. Within each population, trees are
subjected to evaluation, selection, and mutation events, which are
directed by using inter-population consensus information. The
method proves to be both very accurate and vastly faster than
existing heuristics, such that data sets comprised of hundreds of
taxa can be analyzed in practical computing times under complex
models of maximum-likelihood evolution. Branch support values
produced by the metapopulation genetic algorithm might closely
approximate the posterior probabilities of the corresponding
branches.

heuristics � evolutionary computation � maximum likelihood

Optimality criterion-based phylogeny inference is a notori-
ously difficult endeavor because the number of solutions

increases explosively with the number of taxa. Indeed, the total
number of possible unrooted, bifurcating tree topologies among
T-terminal taxa is
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corresponding to nearly 32 billion different trees for 14 taxa and 3 �
1084 trees (i.e., more than the number of atoms in the known
universe) for 55 taxa. Phylogeny inference is a combinatorial
optimization problem of nondeterministic polynomial (NP)-
complete type (1, 2) because (i) no known algorithm can solve it in
polynomial time, and (ii) demonstrating the existence of such an
algorithm would imply that all NP problems have a polynomial time
solution. As most mathematicians expect that no such algorithm
exists, one is forced to admit that no future civilization will ever
build a computer capable of solving the problem while guaranteeing
that the optimal solution has been found.

Computation time has only recently become a central and
widespread practical problem in phylogeny inference for two
main reasons. First, major advances in molecular biology and
biotechnology have caused a dramatic increase in the number of
DNA sequences available, stimulating researchers to increase
their taxon sampling when performing tree reconstruction.
Incidentally, several authors (e.g., ref. 3) have suggested that the
accuracy of phylogeny inference increases with increased taxon
sampling. Second, many simulation studies in the last 10 years
(e.g., ref. 4) have identified the maximum-likelihood (ML)
criterion (5) as one of the best for phylogeny inference. Reasons
for this include (i) statistical consistency (ML estimators tend to

converge to true parameters values when the number of char-
acters is increased), (ii) robustness (violations of the ML model
assumptions have only a moderate impact on the tree inference
accuracy), (iii) the ability to compare different trees within a
statistical framework, and (iv) the ability of ML to make full use
of the original character matrix. Unfortunately, the analytical
power of ML has a cost: computation time. Hence, application
of this model-based criterion makes the use of exact phylogeny
inference methods impractical for more than a trivial number of
taxa (about 12). Note that (i) by ML we mean its most widely
implemented version, i.e., maximum average likelihood (which is
itself a form of the more general maximum relative likelihood
approach; ref. 6), and (ii) in addition to optimality criterion-
based phylogeny inference being proven NP-complete because
of the number of trees, it remains an open question whether
maximum average likelihood can be calculated efficiently (i.e., in
polynomial time) on a single tree.

As with many NP-complete problems, the only practical
approach to large phylogeny inference is the use of heuristics,
i.e., methods that find one or several solution(s) faster than exact
searches while sacrificing a guarantee that the optimal solution
will be found. Given the tremendous number of new questions
in evolutionary biology that could be investigated through the
use of larger taxon samplings, most researchers are ready to give
up the quest for the absolute optimal tree provided that alter-
native heuristic methods yield optimal or near-optimal solutions
with high probability. In response to this trend, much of the
current research in computational phylogenetics concentrates on
the development of more efficient heuristic approaches.

Many existing heuristic methods are handicapped with the
need to optimize model parameters (such as branch lengths) on
each tree examined, a procedure that significantly slows com-
putation time. One such heuristic, which is implemented in the
most widely used inference packages [PAUP* (7), PHYLIP (8),
etc.], is based on hill climbing: an initial tree [most commonly
obtained by using the stepwise addition (StepAdd) algorithm
(9)] is subjected to a topological rearrangement known as branch
swapping (9), followed by an optimization of branch lengths and
other model parameters. If the new tree has a better score than
the starting tree, it is kept and used as the new starting tree;
otherwise the proposed tree is rejected. The procedure is
repeated in a systematic fashion, until no swapping on the
current best tree can improve the score. Because of the need to
optimize parameters at every step (intra-step optimization),
simple branch-swapping methods remain computationally im-
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practical for more than 25–50 taxa, depending on the complexity
of the ML model.

Two classes of solutions have been developed in response to
the problems associated with optimizing parameters on large
trees. The first of these classes includes solutions that partition
the large problem of tree reconstruction into many small sub-
problems whose solutions are then combined into a consensus
global solution. For example, the quartet puzzling method (10)
works by reconstructing the best ML tree of each possible
quartet of taxa, then combining (i.e., puzzling) the quartet trees
to construct an overall T-taxon tree. Because the puzzling
procedure depends on the order with which the taxa are se-
quentially inserted, it is typically repeated n times (with ran-
domization of the T-taxa input order), and a majority-rule
consensus tree is computed from the n T-taxa trees. The
advantage of quartet puzzling is that it avoids numerous opti-
mizations on large trees, optimizing instead numerous small
trees, which is computationally much simpler. Despite the initial
appeal, the method has proven to be only moderately more
accurate (10) than neighbor joining (11), a pairwise-distance
based method that requires significantly less computation time.

The second class is comprised of stochastic heuristics that
avoid optimization of numerous trees entirely. Instead, they
incorporate methods that allow branch lengths and other model
parameters to be optimized as the search proceeds, taking an
inter-step optimization strategy. Stochastic simulated annealing
(SSA; ref. 12), for example, is based on the simple branch-
swapping algorithm described above, but incorporates a method
of perturbing branch lengths at each iteration instead of requir-
ing optimization of each potential solution. SSA avoids local
optima by accepting changes that decrease the likelihood of the
tree with a probability inversely proportional to the reduction in
likelihood. Another increasingly popular approach is the Bayes-
ian method (13) based on the Markov chain Monte Carlo
(MCMC) algorithm. MCMC-based methods also benefit from
avoiding intra-step optimization, although they have a slightly
different aim: sampling the distribution of tree space instead of
only finding optimal trees.

Finally, Matsuda (14), Lewis (15), and Katoh et al. (16) have
recently applied the genetic algorithm (GA), a type of evolutionary
computation method (17), to phylogeny inference. GAs implement
a set of operators that mimic processes of biological evolution such
as mutation, recombination, selection, and reproduction. After an
initial step of generating a population, the individuals (specific
solutions) within that population are (i) subjected to mutation
and�or recombination and (ii) allowed to reproduce with a prob-
ability that is a function of their relative fitness value. In the case of
a phylogenetic inference problem, individuals are typically com-
posed of topologies and model parameters (e.g., branch lengths, the
transition�transversion ratio, rate heterogeneity parameters, etc.)
that need to be optimized. A mutation is a stochastic alteration of
one component of the individual (e.g., a topological rearrangement,
a change in one branch length, or a random modification of a model
parameter), and the fitness of an individual is a function of the score
for that tree. Because selection retains the changes that improve the
value of the optimality function, the mean score of the population
of trees improves over time, i.e., across generations.

We report here on a GA, nicknamed the metapopulation GA
(metaGA), that vastly improves the speed and efficiency with
which ML trees are found (such that nucleotide sequence data
sets incorporating hundreds of taxa can be analyzed in practical
computing times) and yields a probability index for each branch.
We incorporated the metaGA procedure into a computer pro-
gram, METAPIGA (phylogeny inference using the metaGA),
whose advantages are: (i) rapid exploration of search space and
identification of optimal trees, (ii) identification of multiple
optima within a single search, (iii) f lexible GA structure that
allows fine control over both speed and accuracy, (iv) production

of branch probability indices, and (v) a user-friendly interface.
Using simulated and real data sets, we investigated the effect of
major search parameters on the speed and accuracy of the
metaGA procedure. Data sets of 500 taxa and 3,000 nt can be
analyzed on a regular computer (1.7-Gh Pentium IV) in 10 h
under the Hasegawa-Kishino-Yano (HKY) � rate heterogeneity
model. METAPIGA (version 1.0) is written in the cross-platform-
compatible (Windows, Macintosh, Unix�Linux) Java program-
ming language and implements a graphical interface for import-
ing�exporting data, specifying a ML model, monitoring search
progress, visualizing trees, and performing statistical analyses of
trees generated by the GA. METAPIGA (and a supporting user’s
manual) is distributed at http:��dbm.ulb.ac.be�ueg.

Materials and Methods
ML Models and the Basic GA Cycle of Evaluation-Selection-Mutation.
METAPIGA implements the HKY nucleotide substitution model
(18), as well as the nested Jukes-Cantor (JC) (19), K2P (20), and
F81 (5) models. More general models of nucleotide substitution
(e.g., general time-reversible) will be incorporated into future
versions of METAPIGA. The transition�transversion ratio is op-
timized periodically during the search with a frequency specified
by the user. Equilibrium base frequencies remain constant
throughout the search and are either specified by the user or
estimated from the data set. Rate heterogeneity is incorporated
through a method similar to that described by Van de Peer et al.
(21), which is based on corrected distance estimation. Use of this
method allows estimation of rate heterogeneity parameters once,
before the start of the search. The GA cycle of evaluation-
selection-mutation implemented in METAPIGA is described in the
supplemental Materials and Methods and Results and Discussion,
which are published as supporting information on the PNAS web
site, www.pnas.org.

The MetaGA. The essence of the procedure. We designed a family
of heuristic search strategies, the metaGAs. This approach relies
on the coexistence of two or more populations interacting in a
metapopulation setting. Both the number of populations and the

Fig. 1. The principle of CP. Before a tree is subjected to mutation, its
topology is compared with those of the best tree(s) from other populations;
the consensus branches (indicated in bold red) define the partitions that can
(green arrows) and cannot (red arrows) be affected by topological mutations;
i.e., any operation moving a taxon across a consensus branch is prohibited. The
method used to define a consensus branch depends on the CP option chosen
by the user (see text for details). TXS, taxa swap. See supporting Materials and
Methods for details.
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number of individuals per population are specified by the user.
As the metaGA involves several parallel searches, a large
amount of inter-population variation can be maintained, even
when each population is subjected to strong selection pressures.
However, the spirit of the metaGA is that the populations are not
fully independent as they are forced to cooperate in the search
for the optimal tree. Within each population, trees are subjected
to evaluation, selection, and mutation events as they would be in
a single-population GA (see supporting Materials and Methods),
but all topological operators are guided through inter-population
comparisons. The metaGA is based on the assumption that these
comparisons allow the identification of partitions that are cor-
rect (and should not be modified) and regions that still need to
be resolved. Communication among the populations is defined
and controlled through a principle we named consensus pruning
(CP), i.e., consensus information gathered from comparison of
the best trees across populations is used to identify the portions
of each tree that can be subjected to mutations (Fig. 1). The
concept of CP allows the elaboration of many specific inter-
population communication procedures of which we chose to
implement six: random, ring, alternate ring, strict group con-
sensus, majority group consensus, and probability group con-
sensus. When CP is set to random during a metaGA search, each

of the P populations is picked in turn and randomly paired with
one of the remaining P-1 populations. The consensus branches
between the two trees define the partitions that cannot be
affected by topological mutations. For example, if a consensus
branch defines a partition between groups I and II, no taxa swap
between a taxon in group I and a taxon in group II is allowed,
whereas topological changes within group I and within group II
are allowed (Fig. 1). Under the ring option, populations are
ordered in a circle and each population p is paired with the next
population in line (p � 1), with the Pth population paired with
population 1. Alternate ring is the same as ring except that the
direction of pairing switches every G generations (G defined by
the user). Under strict group consensus and majority group
consensus, the partitions that cannot be affected by topological
mutations are defined as the branches exhibited by the strict
consensus and the 50% majority consensus, respectively, among
the best trees from all populations. Finally, under probability
group consensus, each partition is enforced with a probability
proportional to the percentage of populations that agree on that
partition. Variations of the metapopulation concept, such as
local extinction and recolonization, may also prove to be effec-
tive, although we have yet to explore such approaches. To our
knowledge, the single heuristic that could be considered related

Fig. 2. (a) Relative run times vs. number of taxa for the GA (one population), metaGA (with strict group consensus among four populations) and StepAdd
algorithm (9) as well as for a single round of NNI, SPR, and TBR swapping (dotted lines), under the JC (blue) and HKY � rate heterogeneity (red) ML models.
Standard errors (among 10 runs) are indicated for the GA and metaGA only. (b) Ratio between StepAdd and average metaGA run times (vs. number of taxa) under
the JC (Lower) and HKY � rate heterogeneity (Upper) ML models.
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to the metaGA concept is the recently developed hitchhiking
strategy (21) where a set of hitcher trees are allowed (when
possible) to experience the same perturbation as a driver tree.
Hitchhiking is based on the assumption that identical perturba-
tions could gradually drive different temporary solutions toward
the same global optimum, whereas the metaGA assumes that
topological consensus among different temporary solutions al-
lows the identification of unacceptable perturbations. In hitch-
hiking, one solution partially drives the others, whereas in the
metaGA all solutions constantly check each other.

Stopping rule. As the overall number of consensus partitions
increases with search time, the metaGA procedure provides a
convenient stopping rule: the search stops when (i) the best trees
of all populations have identical topologies, or (ii) when all
topological changes allowed by the latest consensus information
have been attempted on the best trees of all populations and
these changes did not improve their scores. Given the high
percentage of partitions that are fixed toward the end of the
search, swapping to completion is swift even on very large trees.
This stopping condition option is called GA decides. Other
stopping rules available in METAPIGA are: stop when the user hits
the stop button (user decides option), stop when the number of
generations predefined by the user has been reached (fixed-
generation option), stop when no topological change has been
accepted by the GA in the last n generations (topol improvement
option; n defined by the user), or stop when a score is obtained
that is better than that specified by the user (target score option).

After the stopping case has been reached, branch lengths are
optimized by the Newton–Rhapson method (23). All parameters
specific to the chosen nucleotide substitution model are also
optimized at this point. Once optimized, the best tree from each
population can be stored, viewed, and exported. We also provide in
METAPIGA the option to keep in memory the n trees (n specified by
the user) with the best scores from each population’s history.

Results and Discussion
We first defined a set of default search settings (supporting
Materials and Methods): one population of four individuals;
selection option � improve, probability of branch length muta-

tion � 0.04; probability of each branch swapping operator
[subtree pruning-regrafting (SPR), nearest-neighbor inter-
change (NNI), taxa swap, subtree swap) � 0.24; probability of
recombination � 0; dynamic operators disabled; CP disabled;
starting trees � random; stopping rule � GA decides; JC model
(i.e., the simplest ML model). We chose to use the JC model for
testing the dynamics of the metaGA because it would allow for
the most rapid searches, allowing us to test more parameters of
the metaGA. All results reported below aim at systematically
testing the effect, on both computing time and accuracy of
topology inference, of varying one or several of these search
parameters. These results are compared with the performances
of algorithms implemented in two widely used software packages
(7, 24): MRBAYES 2.01 and PAUP*4.b8. We are fully aware of the
difficulties associated with comparing runtimes of algorithms
implemented in different software packages. However, the
reader cannot know the relative efficiency of the methods
described above unless some comparisons are made. Two things
are done to assure that the most appropriate�useful compari-
sons are made. First, all analyses (METAPIGA 1.0, MRBAYES 2.01,
and PAUP*4.b8) were performed on the same computer running
WINDOWS 2000 (single 1.7-Gh Pentium IV processor with 1 Gb of
RAM). Second, we compare the efficiency of our method with
methods that are most commonly used; hence, we chose to use
default search settings. Analyses were performed on simulated
data sets comprised of 1,000 nt and either 20, 40, 80, 160, or 320
taxa. All data sets were generated by using DNA-SIM, a program
written by A.R.L. and based on a birth-and-death process (6, 25)
(JC; speciation rate � 10�4; extinction rate � 10�5; mutation
rates � 9.0 � 10�3, 6.0 � 10�3, 3.5 � 10�3, 2.5 � 10�3, 2.0 � 10�3

for 20, 40, 80, 160, and 320 taxa, respectively). We also tested the
efficiency of our metaGA by using a 55-taxa rbcL data set of
1,314 nt (15).

GA (i.e., CP Disabled), MetaGA (i.e., CP Enabled), and Other Heuristics.
Fig. 2 indicates, both for the JC and HKY � rate heterogeneity
(four categories � invariable sites) models, that the time re-
quired by a GA search (one population run to completion) is
much less than that required by StepAdd. The use of the

Fig. 3. (a) Unoptimized (red dots) and optimized (green dots) score vs. time for GA (one population) and metaGA (strict CP with four populations of four
individuals each) runs (JC model, 80 taxa). The asterisks indicate when the stopping rule has been reached. (b) Score of best tree (320 taxa) for each of four
populations run in parallel (no CP). At the time indicated by the red arrow, one population (red) was allowed to use the consensus information from the three
other populations (black). This process demonstrates that scores increase faster when CP is enabled. (c) Number of consensus partitions among four independent
80-taxa populations running under the GA (JC model) vs. number of consensus partitions among four 80-taxa populations interacting through CP during a
metaGA run.
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metaGA (i.e., CP with strict group consensus and four popula-
tions) reduces run time even further. The metaGA is up to seven
times faster than StepAdd when using a simple model (JC) while
it is over 800 times faster when considering a more realistic
model of evolution (here, HKY � rate heterogeneity). Note that
(i) much of the improvement seen under the complex models
comes from taking an inter-step optimization strategy, (ii) the
striking improvement in speed of the metaGA and GA over
more classical search strategies is not at the expense of lower
accuracy (see below), and (iii) the ratios of StepAdd to GA and
StepAdd to metaGA run times increase with increasing number
of taxa (JC, Fig. 2b). As the StepAdd algorithm yields a tree that
is typically used as the starting point of a branch swapping search,
we also show in Fig. 2a the times required for single rounds of
NNI, SPR, and tree bisection-reconnection (TBR) branch swap-
ping (9), i.e., the time required to swap to completion the single
best ML tree. A typical heuristic run would comprise several
rounds of SPR or TBR swapping on a starting tree obtained by
StepAdd. Even if a reasonable starting tree could be obtained
instantaneously, the minimum time required to TBR- or SPR-
swap that tree would vastly exceed the time required by a full GA
or metaGA search.

The efficiency of CP can be attributed to two factors. First, it
allows the stopping rule to be reached more quickly (asterisks in Fig.
3a): near the end of the search, CP-constrained topological muta-
tions affect a greatly reduced number of branches, hence swapping
to completion is much faster than it would be on an unconstrained

tree. Second, the consensus information shared among parallel
populations allows them to increase their scores and the number of
consensus partitions faster than if they were each searching in
isolation (Fig. 3 b and c). Hence, despite the fact that a four-
population metaGA search requires evaluation of four times more
trees each generation than in a single GA search, the former
completes the search much faster than the latter (Fig. 3a).

Accuracy of the MetaGA and Effect of the Number of Populations. Fig.
4 indicates that computing time increases with the number of
populations involved in CP. As many as 8–12 populations are
required to slow down the metaGA to computing times similar
to those of single-population GA runs. However, as Fig. 4b
indicates, two-population metaGA searches are not optimal as
they yield trees with 2–4% error (in comparison with the ML
score) for these idealized data sets. In this case, uninterrupted
interaction between the same two populations does not allow CP
to differentiate between informative and random consensus,
such that the populations rapidly converge toward each other,
terminating the search prematurely. This negative effect de-
creases dramatically with three populations and virtually disap-
pears for runs using more than three populations (Fig. 4b): the
likelihood that all populations evolve the same suboptimal
partitions decreases very rapidly with the number of populations.
In all analyses performed so far (data not shown), four-
population METAPIGA runs seem to give the best compromise
between computing speed and accuracy of topology inference.

Fig. 4. (a) Run times (JC model, 160 taxa) for a one-population GA search (dotted circle; � SE indicated) as well as for two-, three-, four-, six-, eight-, and
16-population metaGA searches under each of the CP options (10 runs each, SE too small for being visible). The vertical arrows delimit the range in number of
populations for which a metaGA run (depending on the CP option) can take the same time than a one-population GA search. Run time increases polynomially
with the number of populations; equation of the regression curve is indicated for the strict and ring options only. (b) Run time (JC model, 160 taxa) vs. percent
error for two-, three-, four-, six-, eight-, and 16-population metaGA searches under each of the five CP options. Coordinates of the one-population GA run are
indicated. Probability and strict consensus options find excellent topologies as soon as the metaGA is run with more than three populations. The probability
option is therefore optimal as it is significantly faster than the strict consensus option.
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Fig. 4 indicates that the majority group consensus option of CP
yields the worse scores without being particularly fast whereas
the strict group consensus option is the most conservative, i.e.,
it yields the best scores but is also the slowest. The optimal
combination of maximum speed and accuracy is probability
consensus with four populations.

MetaGA Branch Support Values. Under CP, increasing the number
of populations decreases the interdependence among the pop-
ulations within a single run. Moreover, we would expect there to
be a direct relationship between the proportion of populations
that agree on a particular branch and the strength of support for
that branch given the data set. Hence, it is conceivable that (i)
a metaGA search with an infinite number of populations would
produce the posterior probability distribution of possible trees,
and (ii) a metaGA search with a finite number of populations
would provide an estimate of this distribution. If both assump-
tions are correct, a set of multiple metaGA searches would
produce trees and clades with frequencies that closely approx-
imate their posterior probabilities, making the results of such a
metaGA comparable to those provided by Bayesian approaches
(13, 24). We tested this conclusion by comparing metaGA
branch support values to bootstrap values as well as to posterior
probabilities of clades produced by the program MRBAYES. Using
an rbcL data set (15) comprised of 55 taxa and 1,314 bp, we
performed 10 independent metaGA searches (strict CP among

10 populations) and computed the majority-rule consensus tree
among the resulting 100 best trees (one tree per population).
Remarkably, plotting metaGA support values against bootstrap
proportions (100 replicates, with SPR branch swapping on a
StepAdd starting tree) uncovers the same bias of bootstrap
values (Fig. 5a) as that described with laboratory-generated
phylogenies and simulations (26). This result suggests that every
metaGA branch support value might efficiently approximate the
probability of the corresponding clade being correct. Further-
more, Fig. 5b indicates that, under the specific conditions tested
at least, there is a direct correspondence between frequencies of
clades obtained under the metaGA and their posterior proba-
bilities estimated with MRBAYES (n chains � 4, temperature �
0.05, sample frequency � 100, burn in � 25,000 steps, 5,000
samples taken). These preliminary results suggest that the
frequencies with which trees and clades are sampled by using the
metaGA might correspond to unbiased estimates of their pos-
terior probabilities. Furthermore, given the results outlined in
Fig. 4, the precision of the posterior probability estimator might
be a function of metapopulation size.
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