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Abstract.—As larger, more complex data sets are being used to infer phylogenies, accuracy of these phylogenies increasingly
requires models of evolution that accommodate heterogeneity in the processes of molecular evolution. We investigated the
effect of improper data partitioning on phylogenetic accuracy, as well as the type I error rate and sensitivity of Bayes factors,
a commonly used method for choosing among different partitioning strategies in Bayesian analyses. We also used Bayes
factors to test empirical data for the need to divide data in a manner that has no expected biological meaning. Posterior
probability estimates are misleading when an incorrect partitioning strategy is assumed. The error was greatest when the
assumed model was underpartitioned. These results suggest that model partitioning is important for large data sets. Bayes
factors performed well, giving a 5% type I error rate, which is remarkably consistent with standard frequentist hypothesis
tests. The sensitivity of Bayes factors was found to be quite high when the across-class model heterogeneity reflected that of
empirical data. These results suggest that Bayes factors represent a robust method of choosing among partitioning strategies.
Lastly, results of tests for the inclusion of unexpected divisions in empirical data mirrored the simulation results, although
the outcome of such tests is highly dependent on accounting for rate variation among classes. We conclude by discussing
other approaches for partitioning data, as well as other applications of Bayes factors. [Bayes factors; Bayesian phylogenetic
inference; data partitioning; model choice; posterior probabilities.]

Maximum likelihood (ML) and Bayesian methods of
phylogenetic inference require the use of explicit mod-
els of the molecular evolutionary process. Assuming
the model is parameterized in an appropriate way,
these methods are more accurate than parsimony and
distance-based methods when the phylogeny contains
long branches or when the data are the result of
complex evolutionary histories (Swofford et al., 1996,
and references therein). However, mismodeling can
lead to erroneous phylogenetic inferences (Felsenstein,
1978; Huelsenbeck and Hillis, 1993; Yang et al., 1994;
Swofford et al., 2001; Huelsenbeck and Rannala, 2004;
Lemmon and Moriarty, 2004). Deciding upon an appro-
priate model, therefore, is a critical step in applying ML
and Bayesian methods. One way of incorporating model
complexity, known as partitioning, is relatively new in
its implementation and use (Huelsenbeck and Ronquist,
2001; Lartillot and Philippe, 2004; Pagel and Meade,
2004). When partitioning is used, different models are ap-
plied to separate classes of a single data set. Class refers
to a group of sites that are assumed to evolve under a
single model of evolution during analysis. Partitioning
allows the incorporation of heterogeneity in models of
the molecular evolutionary process, freeing parameter
values from being joint estimates across all of the data
in a particular data set. The partitioning to which we
refer in this paper concerns primarily differences in the
process of molecular evolution between classes, rather
than the rate of molecular evolution. Thus, we are inter-
ested in differences in the nature of evolutionary change
across classes, as opposed to differences in the amount
of change. This distinction is accomplished by unlinking
the values of model parameters (e.g., substitution matri-
ces, proportions of invariant sites, etc.) between classes,
but leaving branch lengths and topology linked.

Data sets used for phylogenetic analysis are becoming
larger and increasingly heterogeneous. It is now possible
to use genomic-scale sequence data for the inference of a
single phylogeny (e.g., Rokas et al., 2003; Mueller et al.,
2004). Different portions of these data sets may have radi-
cally different functions, selective histories, and physical
positions in the genome. Traditionally, phylogeneticists
have assumed a single model of evolution across an en-
tire data set. The parameter values of this model would
then represent a balance in parameter values across the
unknown number of distinct processes (true models) that
gave rise to the data. As data sets increase in size and het-
erogeneity, the impropriety of linking these differences
in process across all the data in a particular analysis be-
comes ever more problematic.

One commonly used approach to identifying an ap-
propriate partitioning strategy for a data set involves
two steps. First, the researcher must define plausible
classes in the data based on prior knowledge of sequence
evolution (e.g., stem versus loop positions in rRNA or
codon positions in protein-coding genes). We will refer
to each distinct assignment of sites to classes as a parti-
tioning strategy. Second, the researcher compares differ-
ent partitioning strategies and selects the one that is most
appropriate.

Bayes factors (BFs) are a widely used approach for
the comparison of alternative partitioning strategies in
Bayesian phylogenetics, yet their subjective interpreta-
tion leaves questions about their practical application.
A BF is the ratio of marginal likelihoods (the likelihood
of the data under a particular model after integrating
across parameter values) from two competing models
(Kass and Raftery, 1995). One suggested interpretation
of the BF is the ratio of the posterior odds of two models
to their prior odds or, in other words, the relative amount
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by which each model alters prior belief (Kass and Raftery,
1995). Another suggested interpretation is the predictive
ability of two models, that is, the relative success of each
at predicting the data (Kass and Raftery, 1995). When
applying Bayes factors to model choice, a value of 10 for
the test statistic 2ln(BF21) has been suggested as a cut-
off for choosing between two models (denoted 1 and 2;
Jeffreys, 1935, 1961; Kass and Raftery, 1995; Raftery, 1996).
Using this cutoff, 2ln(BF21) > 10 indicates significant sup-
port for model 2, 10 > 2ln(BF21) > −10 indicates ambigu-
ity, and 2ln(BF21) < −10 indicates significant support for
model 1. In practice, most researchers choose the simpler
model, if it exists, when support is ambiguous. Choosing
10 as a cutoff for this statistic is subjective and there is
no evidence, to our knowledge, that it is statistically well
behaved for phylogenetic applications.

Several recent empirical studies have found extremely
strong support for highly partitioned modeling strate-
gies, with 2ln(BF) values that are orders of magnitude
above the recommended threshold (Mueller et al., 2004;
Nylander et al., 2004; Brandley et al., 2005; Castoe and
Parkinson, 2006). These results suggest that either Bayes
factors have a high false-positive rate (they tend to sup-
port the inclusion of additional classes into analyses
when it is unnecessary) or a great deal of heterogene-
ity exists in empirical data. If the former is true, then the
use of BFs with the currently applied cutoff is not war-
ranted for partitioning strategy choice in phylogenetics.
The behavior of the statistic could then be adjusted by ap-
plying a new cutoff for the 2ln(BF) that more accurately
represents true support in the data. If the latter is true,
testing for the inclusion of additional classes should be a
standard step in likelihood-based phylogenetic analyses
and the effects of partitioning strategy misspecification
on phylogenetic inferences should be explored. Addi-
tionally, in none of the studies cited above did the au-
thors continue to add classes until BFs would no longer
support further partitioning. Therefore, it is unclear
how much heterogeneity exists in the data that remains
unconsidered.

By analyzing both simulated and empirical data sets,
we address the following questions: (1) When improper
partitioning strategies are assumed in a Bayesian anal-
ysis, how are bipartition posterior probabilities (BPPs)
affected? (2) Are currently used methods for calculating
and interpreting BFs appropriate for partitioning strat-
egy choice in phylogenetics? (3) Does our prior knowl-
edge about the process of molecular evolution allow us
to capture heterogeneity sufficiently (i.e., assign sites to
classes appropriately)?

METHODS

Empirical Data

Our analyses are based on mitochondrial sequence
data of 12S and 16S rRNA, ND1, and several tRNAs (2191
bp after excluding ambiguous sites) from a study of scin-
cid lizard phylogeny by Brandley et al. (2005). We used
a 29-taxon subset of this data to determine empirically
realistic parameter values and tree topology for simu-

lation and to explore empirical support for alternative
partitioning strategies.

Trees Used for Simulation

Two trees were used in our simulations. Tree A (Fig. 1)
corresponded to the 29-taxon subtree subtended by the
branch labeled “A” in figure 4 of Brandley et al. (2005). We
included only those taxa in this monophyletic group due
to computational limitations. We used the Akaike infor-
mation criterion (AIC; Akaike, 1974), as implemented in
ModelTest v3.06 (Posada and Crandall, 1998), to choose
the most appropriate model across all of the data from
these 29 taxa. The topology of tree A was fixed as the
topology seen in figure 4 of Brandley et al. (2005) and
branch lengths were optimized jointly with likelihood
model parameters in PAUP*4.0b10 (Swofford 2002) us-
ing the sequence data from the 29 taxa in this tree (kindly
provided by M. Brandley).

To obtain tree B (Fig. 1), we started with the same topol-
ogy as tree A. Following the procedure of Lemmon and
Moriarty (2004), we modified the branch lengths on this
tree so that BPPs would be more evenly distributed from
zero to one rather than grouping at either very small
or very large values (compare trees in Fig. 1). How-
ever, we substituted the equations f(x)=10(2x/25)−4 and
f(x)=10(2x/28)−4 for the external and internal branches, re-
spectively. These branch length alterations allowed us to
examine the effects of partitioning strategy misspecifica-
tion over a range of posterior probabilities.

Simulation Model Parameter Values

Our simulations used model parameter values deter-
mined from the empirical data of Brandley et al. (2005).
Using AIC, as implemented in ModelTest v3.06 (Posada
and Crandall, 1998), we chose the most appropriate
model for each class defined by Brandley et al. (2005).
Each model’s parameter values were optimized jointly
with branch lengths using the sequence data for the 29
taxa included in tree A (Table 1). Models were then ran-
domly drawn from this set for most simulations. The
variation in process that it contains is probably typical of
mitochondrial data sets used in phylogenetics, because
it includes data from several genes and its size is repre-
sentative of data sets used in phylogenetic studies.

A second set of simulations, which were used to inves-
tigate the effects of severe underpartitioning, required 27
distinct models. In this case, we used a procedure analo-
gous to the one outlined above but used the data set and
class definitions of Mueller et al. (2004), which resulted
in a set of 42 distinct models from which we could draw.

Model Testing and Bayesian Phylogenetic Inference

Before each Bayesian analysis, we determined the most
appropriate model of substitution. AIC was used to test
among the 24 models implemented in MrBayes v3.1.1
(Ronquist and Huelsenbeck, 2003) using the program
MrModelTest v2.2 (Nylander, 2004) for each class. Our
analyses are not fully Bayesian, because we use AIC to
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FIGURE 1. Tree A is a 29-taxon tree from the study of Brandley et al. (2005) on which data were simulated to test the type I error rate and
sensitivity of Bayes factors. Tree B was used to simulate data for analyses examining the consequences of incorrect partitioning strategies on
inferred bipartition posterior probabilities. The topology of this tree is identical to that of tree A, but branch lengths were adjusted to generate
bipartitions with intermediate posterior probabilities (see text).

find the most appropriate model for each class in our
data. However, we believe this is a reasonable approxi-
mation to the results from a fully Bayesian analysis and
it reduces the computational requirements by ∼3 orders
of magnitude. Were we to use BFs to test for both the op-
timal model for each class and the partitioning strategy
across four classes (Table 2), the number of necessary
independent MCMC runs for each data set would in-
crease from 60 (15 partitioning strategies × 4 replicates)
to 98,904 (24,726 unique model-partitioning schemes ×
4 replicates). We feel that any advantages to making our
analysis fully Bayesian would be far outweighed by the
increased computational burden.

All Bayesian analyses were performed using Mr-
Bayes v3.1.1 (Ronquist and Huelsenbeck, 2003) with

four incrementally heated chains. Default priors and
analysis parameters were used, with the exception of
changes necessary to set models of evolution. In or-
der to ensure convergence, four independent Bayesian
runs were used and the posterior probabilities for in-
dividual bipartitions were compared across runs using
MrConverge v1b1 (a Java program written by ARL),
which implements the following methods for determin-
ing burn-in and convergence. MrConverge is available
from http://www.evotutor.org/MrConverge.

The appropriate burn-in was determined using two
criteria. First, we determined the point at which the like-
lihood scores became stationary in each of the four runs.
After the point of stationarity, the likelihood of sam-
pled trees remains approximately equal as more samples

TABLE 1. Sets of parameter values used to simulate data. Each set represents the maximum likelihood model parameter values for one of the
classes from Brandley et al. (2005). Model abbreviations are as implemented in ModelTest v3.06 (Posada and Crandall, 1998). Methods used to
estimate these values are given in the text.

Model πA πC πG πT rAC rAG rAT rCG rCT rGT I α

1 GTR+I+� 0.443 0.256 0.152 0.149 0.070 0.197 0.045 0.010 0.653 0.024 0.339 0.413
2 SYM+I+� 0.250 0.250 0.250 0.250 0.075 0.427 0.056 0.005 0.427 0.011 0.426 0.598
3 GTR+I+� 0.351 0.260 0.206 0.182 0.136 0.178 0.066 0.000 0.591 0.029 0.483 0.592
4 TrNef+I+� 0.250 0.250 0.250 0.250 0.037 0.187 0.037 0.037 0.667 0.037 0.702 0.523
5 GTR+I+� 0.279 0.302 0.226 0.193 0.068 0.236 0.066 0.000 0.591 0.038 0.511 1.432
6 TVM+I+� 0.179 0.303 0.110 0.408 0.121 0.340 0.022 0.162 0.340 0.015 0.650 0.279
7 K81uf+I+� 0.512 0.304 0.065 0.119 0.000 0.488 0.012 0.012 0.488 0.000 0.005 0.578
8 K81uf+I+� 0.361 0.320 0.100 0.219 0.048 0.452 0.000 0.000 0.452 0.048 0.745 0.842
9 SYM+I+� 0.250 0.250 0.250 0.250 0.059 0.363 0.022 0.000 0.542 0.014 0.425 1.310
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TABLE 2. Fifteen possible strategies for linking models across four
putative classes. Each strategy assumes between one and four distinct
models across the four putative classes. For instance, strategy 1 assumes
a single model across all putative classes, whereas strategy 15 assumes
a separate model for each. Each letter represents an assumed model of
evolution.

Strategy No. of models Class 1 Class 2 Class 3 Class 4

1 1 A A A A
2 2 A A A B
3 2 A A B A
4 2 A B A A
5 2 B A A A
6 2 A A B B
7 2 A B A B
8 2 A B B A
9 3 A B C C

10 3 A B C B
11 3 A B B C
12 3 A A B C
13 3 A B A C
14 3 A B C A
15 4 A B C D

are gathered. The point of stationarity was defined to
be the first sample in which the likelihood score was
greater than 75% of the scores from the samples that fol-
lowed. Second, we determined the point at which the
overall precision of the bipartition posterior probabil-
ity estimates was maximized. We calculated precision
of each bipartition posterior probability estimate as the
standard deviation of the estimates from the four runs,
given an assumed burn-in point. The overall precision
was calculated as the sum of these standard deviations
across all observed bipartitions. The most appropriate
burn-in according to this criterion, then, is the burn-
in that maximizes the overall precision (minimizes the
sum). The final burn-in was assumed to be the maximum
burn-in from the two criteria. This assured that the like-
lihood was stationary and the Markov chains in the four
runs had converged on the same posterior probability
distribution.

We checked for convergence using two approaches.
First, we compared the bipartitions across the four in-
dependent runs and terminated the runs only after the
maximum standard deviation across all BPPs was less
than 0.0314. This requirement assures that the 95% confi-
dence intervals for all posterior probability estimates had
a width of less than 0.0616 (n = 4). Second, we ensured
that the tree lengths from each analysis at stationarity
were approximately equal to the length of the tree used
to simulate the data. In cases where one or more runs
in an analysis failed to reach convergence in a reason-
able amount of time (approximately 7%), all four runs
were removed from subsequent analyses. These runs,
all simulated on tree B, seemed to become stuck in a re-
gion of parameter space where sampled trees had branch
lengths that were proportionally the same as the tree
used to simulate the data, but the total tree length was
∼50-fold too long. Additional details of methods for de-
termining burn-in and convergence will be described
elsewhere.

TABLE 3. An overview of the four methodological sections. The
second column lists the topics addressed by the analyses in that sec-
tion, the third column shows whether the data used were simulated
or empirical, the fourth column gives the tree used for simulations (if
applicable), and the final column gives the figure or table with results
from that section. “—” indicates that the data were empirical, so no
tree was needed for simulations.

Section Topics Data Tree Results

I BPP accuracy Simulated B Figures 4, 5
II Type I error rate Simulated A Figures 6, 7
III Sensitivity analysis &

type I error rate
Simulated A Table 4

IV Presence of unexpected
heterogeneity

Empirical — Table 5

Bayes Factor Calculation

In a number of analyses described below, we com-
pare different partitioning strategies using Bayes factors.
Here we describe our method for calculating Bayes fac-
tors. After discarding burn-in samples (see above), the
likelihood scores of all trees sampled in the four in-
dependent runs were concatenated and the marginal
likelihood was estimated as the harmonic mean of
the likelihood scores (Newton and Raftery, 1994) using
Mathematica v5.2 (Wolfram, 2003). When comparing two
different partitioning strategies applied to the same data
set, the statistic 2ln(BF) was calculated as

2ln(BF21) = 2[ln(HM2) − ln(HM1)],

where HM2 is the harmonic mean of the posterior sample
of likelihoods from the second strategy and HM1 is the
harmonic mean of the posterior sample of likelihoods
from the first strategy. Positive values of 2ln(BF21) are
indicative of support for the second strategy over the
first strategy.

METHODOLOGICAL OVERVIEW

An overview of the four methodological sections is
given in Table 3, and details of the simulation methods
and analyses are included with the results below. The
first section uses data simulated on tree B to examine the
effects of assuming an incorrect partitioning strategy on
BPP estimates. The second section uses data simulated
on tree A to examine the rate at which BFs overparti-
tion data (the false-positive rate). The third section uses
data simulated on tree A to investigate the sensitivity of
BF analyses in identifying the true partitioning strategy
from among a pool of possibilities. The fourth, and final,
section uses a 29-taxon subset of the data from Brandley
et al. (2005) to explore other potential, but unexpected,
strategies for partitioning empirical data.

RESULTS

Section I—Consequences of Incorrect Partitioning

To understand the effects of incorrect partitioning on
BPP estimates, we followed the approach of Lemmon
and Moriarty (2004). We simulated data sets under
four different partitioning strategies and analyzed each
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2007 BROWN AND LEMMON—DATA PARTITIONING AND BAYES FACTORS 647

FIGURE 2. An overview of one replicate from section I. The left
side of the figure shows the four partitioning strategies used to sim-
ulate the data. Each long, horizontal line represents a data set. Each
short, vertical line represents a boundary between classes. The num-
bers given above the individual classes are exemplars of models chosen
from Table 1 to simulate the data for each class. The right side of the
figure shows the partitioning strategies assumed when analyzing the
simulated data. The same set of partitioning strategies was used to
both simulate and analyze the data. Note that the four strategies given
on either side are nested (e.g., the three-class strategy is obtained by
subdividing the two-class strategy, the four-class strategy is obtained
by subdividing the three-class strategy, etc.). Each line in the middle
of the figure represents one Bayesian analysis and corresponds to one
of the boxes in Figure 4. Arrows that point above horizontal (solid) are
overpartitioned analyses, arrows that point below horizontal (dotted)
are underpartitioned analyses, and arrows that are directly horizontal
(dashed) are correctly partitioned analyses.

of those data sets under the same four partitioning
strategies (Fig. 2). This procedure produced analyses that
were correctly partitioned, overpartitioned, and under-
partitioned. To assess error, we compared results from
analyses that assume the correct partitioning strategies
to those that do not. In order to be concise, we use the
term error to describe the difference in bipartition poste-
rior probability resulting from correctly and incorrectly
partitioned analyses. Although we understand that all
bipartition posterior probabilities may be “true,” given
the assumed model of evolution, they are nonetheless
misleading if they misrepresent the support that would
be given under the true model of evolution.

Simulations.—We simulated data sets with one to four
classes on tree B according to partitioning strategies 1, 6,
9, and 15 (Table 2; Fig. 2). Each data set contained 2700
bp. Nine sets of one to four models, as appropriate, were
drawn randomly without replacement from the set of
nine models (see above; Table 1). Seven replicates were
simulated under each of these nine sets for a total of 63
simulated data sets from each of the four strategies.

Data sets with greater numbers of classes (9 or 27)
were also simulated to investigate the degree of error
in bipartition posterior probabilities induced by analy-
ses with more extreme underpartitioning. We simulated
63 nine-class data sets so as to directly mimic the data of
Brandley et al. (2005) with regards to size and number
of classes, as well as the distribution of model parameter
values across classes. Each class in the simulated data
sets was the same length as its corresponding empirical
class, making each simulated data set 2199 bp total, and

was simulated using the model and maximum likelihood
parameter values chosen by its corresponding empirical
class.

Data sets of 27 classes were simulated using parameter
values taken from whole salamander mitochondrial ge-
nomic data (Mueller et al., 2004). For each of nine sets of
models, we chose 27 models randomly without replace-
ment from the set of 42 models. Seven replicate data sets
consisting of 27 100-bp classes were simulated for each
of the nine sets of models.

Analyses.—All data sets with one to four true classes
were analyzed four times each, assuming partitioning
strategies 1, 6, 9, and 15 (Fig. 2). As each data set has a sin-
gle true partitioning strategy, three analyses of each were
either over- or underpartitioned. Details of the analysis
and calculations are as above. The 9- and 27-class data
sets were analyzed only under two partitioning strate-
gies: the true strategy and a homogeneous model. Error
induced by under- and overpartitioning was determined
by plotting BPPs from each assumed partitioning strat-
egy relative to BPPs from the correct partitioning strategy
(see Fig. 4). The r2 of these points relative to a 1:1 line was
found and the error was calculated as 1 − r2. Relative er-
ror was calculated by standardizing all values of error to
the analysis with the smallest error (see plot with three
simulated classes and three assumed classes in Fig. 4).

Results.—Both under- and overpartitioning led to er-
roneous estimates of BPPs (Fig. 4). Tight fit along the
diagonal for replicated runs assuming the true partition-
ing strategy suggests that stochastic error is very small

FIGURE 3. Simulation strategy used in section III for a two-class
data set. The straight line on which the points fall is a one-dimensional
representation of parameter space. Two models (denoted as 1 and 2)
chosen from Table 1 are some distance apart in this space initially (rela-
tive parameter distance = 100%; see text). Model 1 is represented by the
white circle on the left and model 2 is represented by the black circle on
the right. Smaller relative parameter distances are given by the circles
closer to the middle. The degree of difference in shading of the circles
represents the degree of difference in their parameter values. The cir-
cles that are 3rd from the left and 3rd from the right are models 1 and 2,
adjusted to a relative parameter distance of 50%. The circle in the center
consists of parameter values that are averages of the initial parameter
values of models 1 and 2 (relative parameter distance = 0%). Data sets
were simulated across the entire range of relative parameter distances
(0% to 100%). The three- and four-class data sets were simulated using
an analogous scheme.
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FIGURE 4. The effects of assuming incorrect partitioning strategies on bipartition posterior probability (BPP) estimates. Each point represents
an individual bipartition, with the x- and y-axes of each plot showing inferred BPPs when assuming correct and incorrect partitioning strategies,
respectively. Column labels specify the true number of classes and row labels specify the number of classes assumed in analyses plotted on the
y-axis. Gray boxes along the diagonal assume the true partitioning strategy for both axes. Boxes below the diagonal show the effects of assuming
increasingly overpartitioned models, whereas boxes above the diagonal show the effects of assuming increasingly underpartitioned models.
Error (relative to the error introduced by sampling and convergence alone) is given in each box (see text).

and that our method of determining convergence and
burn-in was sufficient (gray boxes on the diagonal in
Fig. 4). The error induced by underpartitioning (boxes
above the diagonal in Fig. 4) is more severe than the
error induced by overpartitioning (boxes below the di-
agonal in Fig. 4). No clear trends in the error emerge
within the individual plots of Figures 4 and 5; inferred
posterior probabilities can be either inflated or deflated
when assuming incorrect partitioning strategies during
analysis.

Error in inferred BPPs increases as the degree of under-
partitioning increases (Fig. 4). This trend continues for
9- and 27-class data sets (Fig. 5). However, the amount
of error that can be introduced into an analysis due to
underpartitioning seems to reach some limit. In other
words, the relative error seen for the 27-class analyses
(relative error = 65.39) is not substantially larger than
the error seen for the 9-class analyses (relative error =
60.74), despite the large difference in the true number
of classes between these simulations. However, these
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2007 BROWN AND LEMMON—DATA PARTITIONING AND BAYES FACTORS 649

FIGURE 5. Error introduced into estimates of bipartition posterior
probabilities (BPPs) when assuming a single class for data sets with 9
or 27 different classes. Each point represents an individual bipartition,
with the x-axis showing the inferred posterior probability for that bipar-
tition when the correct partitioning strategy is assumed in the analysis
and the y-axis showing the posterior probability inferred when assum-
ing an underpartitioned strategy (one class) during the analysis. Error
(relative to the error introduced by sampling and convergence alone)
is given in each plot.

values should be interpreted cautiously as different sets
of models were used in the 9- and 27-class simulations.

We also investigated the error resulting from misparti-
tioning, by using analyses originally intended for BF sen-
sitivity analyses (see below). We define mispartitioning
to occur when the correct number of classes is assumed
but the assignment of sites to classes is incorrect. We
found that mispartitioning induced error roughly equiv-
alent in magnitude to underpartitioning by a single class
(data not shown).

Additionally, we compared branch length estimates
for the analyses summarized in Figure 4. We found that,
within the range of over- and underpartitioning seen in
these data sets, virtually no error in branch length es-
timates was detected. This is in contrast to the results
of Lemmon and Moriarty (2004), who found that model
misspecification within a single class, especially when
rate heterogeneity was not accounted for, could induce
substantial error in branch length estimates. Note, how-
ever, that our simulations used identical branch lengths
across classes. It is unclear whether a gamma-distributed
rates model would be able to account for true differences
in average rate of evolution across classes (see Marshall
et al., 2006).

Section II—False-Positive (Type I) Error Rate

To assess the false-positive rate, we simulated data
sets and analyzed them using both the correct strategy
and a strategy that was overpartitioned by one class. We
then used Bayes factors to choose between strategies.
The false-positive rate was calculated as the proportion

of data sets for which the overpartitioned strategy was
preferred to the correct strategy.

Simulations.—To assess the rate at which BFs overparti-
tion homogeneous data sets, we simulated 200 data sets,
each using a single evolutionary process. The size of each
simulated data set was an even number randomly cho-
sen on a log10 scale from 10 to 10,000. For each simulated
data set, one model was chosen from the set of nine (see
above; Table 1) and used to simulate data along tree A
(Fig. 1).

To investigate the effects of data context on type I error
rates, we simulated 10 additional data sets that directly
mimicked the data of Brandley et al. (2005) for the 29 taxa
identified above. Classes were the same length as found
in the empirical data set (total data set size = 2199 bp)
and were simulated using the model and maximum like-
lihood parameter values chosen by their corresponding
empirical class.

Analyses.—Each simulated data set was analyzed us-
ing Bayesian analyses (as described above). Data sets that
consisted of one true class were analyzed twice, assum-
ing either one class or two equally sized classes. Data sets
consisting of nine classes were analyzed 10 times each.
In the first analysis, a separate model was given to each
simulated class. Each of the nine additional analyses in-
cluded an unnecessary class that subdivided one of the
nine simulated classes and was compared to the analysis
assuming the true partitioning strategy using BFs for a
total of 90 tests (10 replicates × 9 tests per replicate). We
scored simulations with 2ln(BF21) > 10 as false positives.

Results.—Using a cutoff of 10 resulted in a 5.29% type
I error rate (10/189, Fig. 6). This error rate suggests that

FIGURE 6. The relationship between data set size and Bayes fac-
tor when comparing the true partitioning strategy (homogeneous) to
an overpartitioned strategy (two classes). The dashed line represents
equal support for the one- and two-class analyses. Points falling above
the upper solid line indicate very strong support for the two-class strat-
egy, and points falling below the lower solid line indicate very strong
support for the one-class strategy.
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FIGURE 7. The relationship between gene size and Bayes factor
when comparing the true partitioning strategy (9 classes) to an over-
partitioned strategy (10 classes). The x-axis is the length of the gene
into which the additional, unwarranted class is being introduced. The
dashed line represents equal support for the nine- and ten-class strate-
gies, points falling above the upper solid line indicate very strong sup-
port for the ten-class strategy, and points falling below the lower solid
line indicate very strong support for the nine-class strategy.

using this cutoff may produce results analogous to use of
α = 0.05 in a frequentist approach. There are no strong
trends of 2ln(BF) with data set size, although there may
be a reduction in the variance of 2ln(BF) as data set size in-
creases. BF analyses overpartitioned data sets with nine
true classes in 3.33% of tests (3/90; Fig. 7). These data
suggest that the false-positive rate of BFs is not strongly
altered by testing in the context of a data set that is al-
ready highly partitioned. False positives seem to be in-
dependent of the parameter values chosen to simulate
the data in both sets of analyses.

Section III—Sensitivity Analyses

To assess the ability of BFs to detect true differences
in evolutionary models across classes, we used a two-
step blind analysis. In the first step, ARL simulated
data sets that were 2700 bp in length and contained
up to four classes. JMB had no a priori knowledge of
the true distribution of evolutionary processes across
these four classes but was aware of the three possi-
ble locations for boundaries between classes (all sites
from each class were contiguous in the simulated data
sets). In the second step, JMB attempted to discern the
true partitioning strategy (among the 15 possible strate-
gies given four potential data classes; Table 2) using
BFs.

Simulations.—Data sets were simulated with a vari-
ety of different partitioning strategies containing two to
four true classes (strategies 2 to 15 in Table 2). Within
each strategy, simulations were performed as follows

(see Fig. 3): (i) the models and parameter values were
randomly chosen without replacement from the nine
Brandley et al. (2005) models (Table 1); (ii) one data set
was simulated on tree A; (iii) the average value of each
parameter across the chosen models was calculated; (iv)
the simulation parameter values were adjusted to be 25%
closer to this average; (v) another data set was simulated
using the new parameter values; (vi) steps iv and v were
repeated until the final simulation used a homogeneous
model (i.e., all parameter values were set to the aver-
ages of the originally chosen models). All final simula-
tions were equivalent to using strategy 1 from Table 2.
See Figure 3 for an illustration of these steps for a two-
class simulated data set. This method resulted in five
data sets per replicate with the same distribution of mod-
els, but with increasingly more similar parameter values.
Seventy-five data sets were simulated in total (15 strate-
gies × 5 relative parameter distances). The term relative
parameter distance is used to distinguish among simula-
tions that differ only in the similarity of their parameter
values. Simulations with parameter values equal to those
estimated from the empirical data are defined to have a
relative parameter distance of 100% and those simula-
tions with equal parameter values across classes have a
relative parameter distance of 0%.

Analyses.—All phylogenetic analyses and BF calcula-
tions were performed by JMB as outlined above and
without any knowledge of the strategy used to simulate
the data. Marginal likelihoods were calculated for each
of the 15 possible partitioning strategies for each data
set (Table 2). The partitioning strategy with the highest
marginal likelihood was identified as the best and all
strategies with a 2ln(BF) ≤ 10 when compared to the best
were included in a candidate set of partitioning strate-
gies. The simplest partitioning strategy (with the fewest
overall model parameters) within this candidate set was
then chosen as the most appropriate and compared to
the true partitioning strategy used to simulate the data.
If two strategies within the candidate set had the same
number of free parameters, the strategy with the higher
marginal likelihood was preferred.

Results.—JMB, though blind to the simulation strategy,
was able to choose the correct partitioning strategy using
BFs 100% of the time with relative parameter distances
equal to 100% and 93.3% of the time (14/15 correct) with
relative parameter distances equal to 75% (Table 4). As
the relative parameter distance narrowed to 50%, accu-
racy was 86.7% (13/15 correct). Accuracy then dropped
rapidly to 33.3% (5/15) when the relative parameter dis-
tance reached 25%. When a homogeneous model was
used to simulate the data (relative parameter distance
= 0%), the true model was correctly chosen in 73.3%
(11/15) of cases, but BF analyses did overpartition 26.7%
of the time (4/15). The higher rate of overpartitioning,
relative to the analyses above, results from the multiple
testing necessary to choose a single partitioning strategy
from a set of 15. Examination of 2ln(BF) values shows
that the false-positive rate of individual tests remains
approximately 5% (5.78%; although these tests are not
independent).
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TABLE 4. Accuracy of Bayes factors in determining the correct partitioning strategy (out of 15) for data sets with four putative classes. For
each section, the true number of classes is given above the section. Relative parameter distances (see text) of simulations are listed above each
column. “Over” indicates that the chosen partitioning strategy contained more than the true number of classes, “Under” indicates that the chosen
partitioning strategy contained fewer than the true number of classes, “Correct” indicates that the true partitioning strategy was chosen, and
“Mis” indicates that the chosen partitioning strategy had the same number of classes as the true model but boundaries between classes were
misplaced in the data. “—” indicates that such an outcome is impossible for that particular test.

1 Class 2 Classes 3 Classes 4 Classes

0% 25% 50% 75% 100% 25% 50% 75% 100% 25% 50% 75% 100% Totals

Over 4 1 0 1 0 1 0 0 0 — — — — 6
Correct 11 2 5 4 5 2 5 5 5 1 3 5 5 60
Under — 1 0 0 0 2 0 0 0 4 2 0 0 7
Mis — 1 0 0 0 0 0 0 0 — — — — 2

Section IV—Additional Empirical Partitioning

Brandley et al. (2005) found that BFs strongly sup-
ported strategies that divided their data set by gene,
codon position, and stem versus loop position. Because
strong support was found for the inclusion of every
class they attempted to add to their analysis, it is un-
clear whether partitioning along these expected bound-
aries has completely accounted for the heterogeneity in
this data set or whether further partitioning along un-
expected boundaries would also find strong support.
Here, we partitioned their empirical data further and
used Bayes factors to assess support for these new parti-
tioning strategies.

Analyses.—We first divided each of the nine classes
originally defined by Brandley et al. (2005) either in half
according to sequence position or by randomly assigning
sites to two equally sized classes. Randomly assigning
sites to classes is a strategy that has no biological mean-
ing and should only be supported if a great deal of het-
erogeneity in models across sites exists, such that these
new classes allow a significantly better fit of the models
to the data despite the random nature of the assignment.
Bayesian analyses and BF calculations were performed
as described above. In order to properly account for rate
variation between partitions, both rate multipliers (using
the prset ratepr = variable command in MrBayes) and
model parameters were unlinked across classes (Mar-
shall et al., 2006). To investigate whether tests of model
heterogeneity across classes are affected by accounting or
not accounting for rate variation, all tests were repeated
with only model parameters or rate multipliers unlinked
across classes. All analyses were conducted twice, once
using all available sequence data and once using only
the data to be partitioned. To provide a point of refer-
ence for Bayes factor values, we also tested for the need
to partition by codon position in protein-coding data, by
stem/loop position in RNAs, and jointly by gene and
stem/loop position in RNAs. These tests are directly
analogous to those conducted by Brandley et al. (2005),
except that they pertain only to the 29-taxon subset of
the data from the original study (see above).

Results.—Tests for the inclusion of biologically un-
expected divisions in the empirical data were gener-
ally concordant with simulation results, assuming that
most of the novel classes are unwarranted. When both
rate variation and model variation were unlinked across

classes, relatively little support was found for novel di-
visions (Table 5). Support for novel divisions seems to
be higher when using data from only a single expected
class in analyses, although the reason for this pattern is
unclear and warrants further investigation. Values of BFs
supporting the inclusion of novel divisions were gener-
ally much lower than values supporting the inclusion of
divisions expected a priori.

The results of tests for model heterogeneity across
classes are strongly dependent on accounting for across-
class rate variation. When rate variation is unaccounted
for (Table 5), support for many unexpected divisions in-
creases sharply while support for some expected par-
titions plunges drastically. These changes in support
cannot be explained solely by variation in rates across
classes, because support for rate variation by itself is rel-
atively modest (Table 5).

DISCUSSION

Improper data partitioning can result in misleading
BPPs (Figs. 4 and 5). Error is introduced both when data
are underpartitioned and when they are overpartitioned,
although the amount of induced error is larger when they
are underpartitioned. These results are somewhat dif-
ferent than those of Lemmon and Moriarty (2004), who
investigated the effects of model adequacy on phyloge-
netic accuracy when the model of evolution was homo-
geneous across the data set. They found relatively little
error in inferred BPPs when models were overparam-
eterized and severe error when models were underpa-
rameterized, particularly when models did not account
for rate heterogeneity. These differences likely stem from
the different nature of complexity when considering the
number of classes as compared to the inclusion or ex-
clusion of parameters describing aspects of fundamen-
tal importance to the molecular evolutionary process.
Increases in model complexity through data set parti-
tioning do not change the nature of the models being
considered (as when comparing JC to GTR+I+� mod-
els; see Swofford et al., 1996, and references therein for
model descriptions), but rather allow model parameter
values to be uncoupled across classes.

The error induced by overpartitioning probably re-
sults from the fact that adding a new class causes a
wholesale increase in the number of parameters. If each
class required a GTR+I+� model of evolution, a single
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new class would add ten free parameters to an analysis.
The ratio of free parameters to the amount of data rises
rapidly when data are partitioned; variance in parame-
ter estimates increases when these additional parameters
are not needed (data not shown), resulting in misleading
posterior probabilities. Error caused by overpartitioning
may disappear as sequence length per class increases and
parameter values can be estimated accurately (Lemmon
and Moriarty, 2004). One approach to avoid such large
increases in the number of free parameters is to parti-
tion parameters individually (e.g., unlinking base fre-
quencies between classes, but leaving substitution rate
parameters linked).

Underpartitioning leads to greater phylogenetic error
than does an equal degree of overpartitioning. This result
is not surprising given results of model adequacy stud-
ies involving a single class (e.g., Kuhner and Felsenstein,
1994; Yang et al., 1994; Huelsenbeck and Rannala, 2004;
Lemmon and Moriarty, 2004). As the number of assumed
classes decreases below the true number of classes,
parameter estimates become poorer fits to the true pa-
rameter value for any particular site. This can lead to
misleading bipartition posterior probabilities.

As the true number of classes increases, analyses that
assume an overly simplistic partitioning strategy (e.g., a
homogeneous model) will yield increasingly inaccurate
BPPs (Figs. 4 and 5). However, the rate of increase of the
error seems to slow as the true number of classes becomes
very high. This effect is likely due to the fact that differ-
ences in parameter values across classes fall within some
defined range. If we envision an n-dimensional space
(where n is the number of parameters in our models), we
could define a space bounded by points, each of which
represent a true model of evolution for one class. As the
number of true classes in our data increases above one,
the volume of this space will increase. However, it seems
likely that some limit on this volume will be approached.
This limit represents the defined space in which true
model parameter values lie. If a single class is assumed
during analysis, the error in estimates of BPPs may be
very similar regardless of whether the true number of
classes is 10 or 10,000 if the volume of the parameter
space is similar in these two cases.

The error that is induced by either under- or over-
partitioning is not consistent in its direction. Therefore,
better-fitting models often do not cause the average pos-
terior probability of bipartitions in the consensus tree to
go up, in contrast to the results of Castoe et al. (2004).
Although, on average, no directional trends in error are
apparent, it is possible that the pattern of branch lengths
surrounding a particular bipartition can be used to pre-
dict the direction of BPP change as partitioning strate-
gies become more complex (B. Kolaczkowski, personal
communication).

Bayes factors exhibit statistically desirable behavior in
the context of partitioning strategy choice for phyloge-
netic inference. Type I errors (false positives) occurred
at an acceptably low rate (∼5%) across a large range
(3 orders of magnitude) of data set sizes and did not
change appreciably when the data set included addi-

tional classes beyond those involved in the test (Figs.
6 and 7). These results suggest that a convenient paral-
lel in interpretation exists between the expected rate of
type I errors for Bayes factors and a frequentist choice of
α = 0.05. Given that several empirical studies (Mueller
et al., 2004; Nylander et al., 2004; Brandley et al., 2005;
Castoe and Parkinson, 2006) have found their most com-
plex partitioning strategy to be supported by 21n(BF)
values at least an order of magnitude larger than seen in
our simulations, these values can reliably be interpreted
as very strong support.

Bayes factors are sensitive enough to reliably detect the
differences in process across different classes in empirical
data (Table 4). Because all of the data used to choose pa-
rameter values for simulation in our study came from the
mitochondrial genome, the differences in evolutionary
process seen in these data likely underestimate the dif-
ferences seen across the nuclear genome or between the
nuclear and mitochondrial genomes. The fact that Bayes
factors were able to reliably choose the true partition-
ing strategy for our simulated mitochondrial data sets
suggests that they may perform quite well in detecting
differences in process across large, heterogeneous DNA
data sets.

Bayes factors, as we have used them here, summarize
the relative support for two alternative models (parti-
tioning strategies) and indicate when there is sufficient
support for using one over another. By applying this
threshold approach, an investigator will have to calcu-
late the marginal likelihood for each possible partitioning
strategy, conduct many comparisons and may find sup-
port for multiple strategies, all of which reject a null, but
none of which have strong support relative to each other.
Thus, the use of Bayes factors can be cumbersome in the
context of comparing pools of models. For instance, at
first glance the ∼27% rate of overpartitioning for one-
class data sets in the sensitivity analyses is incongruent
with the ∼5% overpartitioning rate seen when testing
for false positives. This difference results from the mul-
tiple tests necessary to apply Bayes factors in compar-
ing among a pool of models. A correction for multiple
tests, analogous to a Bonferonni correction in frequen-
tist statistics, could be applied in this case although the
degree of needed correction is dependent on the number
of strategies being compared. In our analyses, raising the
threshold to ∼22 would have prevented all cases of over-
partitioning (although we have not calculated the reduc-
tion in sensitivity that this new threshold would incur).

We found that estimating the marginal likelihood us-
ing a harmonic mean, in conjunction with a threshold
of 2ln(BF) = 10, provides desirable statistical behavior in
our empirically based simulations (Figs. 6 and 7, Table 4).
The fact that other methods of estimating marginal like-
lihoods (e.g., thermodynamic integration; Lartillot and
Philippe, 2005) are substantially more computationally
intensive suggests that the added computational costs
may outweigh the more proper statistical behavior of
these alternatives.

Using a 2ln(BF) value of 10 as a threshold for choosing
an optimal partitioning strategy from among a pool of
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alternative models performs well, but it is not the only
way to apply Bayes factors in this context. Although most
empirical studies use a threshold of 10, the most strictly
Bayesian technique is to use a threshold of 0, which is
equivalent to simply choosing the strategy with the high-
est marginal likelihood. In essence, this alternative gives
no priority to simpler partitioning strategies. In our sim-
ulations, such an approach has increased sensitivity to
true differences in models, but this sensitivity comes at
the cost of a much higher rate of overpartitioning (note
the large number of points above the 2ln(BF) = 0 lines
of Figs. 6 and 7). Given that using a threshold of 10 is
sensitive enough to consistently detect true differences
between models parameterized according to empirical
data, a threshold of 10 seems preferable.

We found relatively little support for most of the arbi-
trary classes we added to the empirical data of Brandley
et al. (2005). By arbitrary we mean that these classes had
little to no expected biological meaning. These results
are largely concordant with the results of our simula-
tions, with most BF values for the inclusion of arbitrary
classes falling within the range seen when testing sim-
ulated data sets for type I errors. However, the fact that
we occasionally observe large BF values when introduc-
ing arbitrary classes suggests that our biological intuition
may not fully account for all heterogeneity in the data.

The results of tests for process heterogeneity across
classes were strongly dependent on accounting for het-
erogeneity in mean rate across classes. We cannot know
for certain which classes should be included in our anal-
yses, since these data are empirical. However, the results
obtained when mean rate heterogeneity is included, as
opposed to when it is ignored (Table 5), seem far more
plausible. This difference is likely explained by a bias
in inferred tree length caused by not properly account-
ing for variation in mean rate (Marshall et al., 2006). Our
whole data set analyses that unlinked only model pa-
rameters generally inferred tree lengths that were ∼25%
longer and much more heterogeneous than those analy-
ses in which both model parameters and rate multipliers
were unlinked (data not shown). Interestingly, unlinking
only rate multipliers across classes caused tree length es-
timates to be ∼50% shorter than analyses unlinking both
model parameters and rate multipliers (data not shown).
These results suggest a strong interaction between model
parameter and rate multiplier estimates, which should be
explored further.

Although relatively little support for novel divisions
was found in the data, one cannot be certain that using
classes defined a priori will allow the identification of the
optimal partitioning strategy. One solution to this prob-
lem is the use of a Dirichlet process model in the Bayesian
framework to integrate over possible assignments of sites
to different classes (e.g., Lartillot and Philippe, 2004;
Huelsenbeck et al., 2006). This approach does not re-
quire a prespecified number of process classes and jointly
estimates tree topology and partitioning strategy. The
Dirichlet process model will likely be implemented in fu-
ture versions of MrBayes (J. Huelsenbeck, personal com-
munication). Another potential solution is the use of a

phylogenetic mixture model (Pagel and Meade, 2004).
This approach incorporates multiple models of substi-
tution by calculating the likelihood as a weighted sum
across all models for each site, with the weights estimated
as nuisance parameters. Current implementations (Pagel
and Meade, 2004) of this approach require the a priori
specification of the number of process classes. An ap-
propriate number of process classes can be chosen by
re-running the analysis with varying values and using
BFs to choose the most optimal number of classes. In
theory, this mixture model approach could be extended
to integrate across the number of process classes as part
of the inference procedure itself.

Although we have primarily tested the use of BFs in
the context of dividing data into different classes, each
of which is assumed to evolve under models that are pa-
rameterized in a similar manner, they could additionally
be applied to the comparison of models with a variety
of forms, including process models that are non-nested,
as well as tests of other salient features of the data,
including rate heterogeneity across data classes, clock-
like rates of evolution, or tests of topology. The appli-
cation of BFs to these other areas warrants additional
study.

CONCLUSIONS

We have shown that estimates of Bayesian posterior
probabilities can be misleading due to both over- and
underpartitioning data. This suggests that care must be
taken to assure that process heterogeneity is accounted
for when complex data are used to estimate phylogenies.
We have shown that Bayes factors represent a statisti-
cally sound method for choosing partitioning strategies
in Bayesian phylogenetic inference. Bayes factors give
an acceptable false-positive rate (5%) that is indepen-
dent of sequence length. Bayes factors are also sensitive
enough to distinguish between model processes that are
even more similar than observed between classes of em-
pirical data. This conclusion is conservative considering
that all of the parameter values used in our simulations
are derived from mitochondrial data sets and likely pro-
duce a set of models that are more similar than would be
found across a nuclear genome. If this is true, BFs should
have sufficient statistical sensitivity to detect differences
across heterogeneous data sets of nuclear DNA.

Although Bayes factors seem to be statistically sound
for use in the framework of partitioning strategy choice
that we have investigated here, this approach can only be
used to compare partitioning strategies that have been
defined a priori. This constraint fundamentally limits
the approach. Such limits are highly relevant to empiri-
cal studies given the potential difficulties in defining an
optimal strategy a priori. A more robust approach may
be the use of other methods that do not require a pri-
ori partitioning strategy specification, such as Dirichlet
process priors (Lartillot and Philippe, 2004; Huelsenbeck
et al., 2006) or mixture models (Pagel and Meade, 2004).
Given the strong support for strategies containing multi-
ple classes seen in recent empirical studies (e.g., Mueller
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et al., 2004; Nylander et al., 2004; Brandley et al., 2005;
Castoe and Parkinson, 2006), methods for incorporat-
ing process heterogeneity into all likelihood-based anal-
yses of phylogeny are likely to be ubiquitous in the near
future.

ACKNOWLEDGMENTS

The authors thank M. Brandley and R. L. Mueller for kindly pro-
viding data. D. M. Hillis suggested the use of the blind format for the
sensitivity analysis. The Hillis, Bull, and Cannatella labs, as well as an
IGERT-supported phylogenetics discussion group, at the University of
Texas–Austin provided much valuable discussion and feedback. We
also thank the IGERT program for the use of a NPACI Rocks clus-
ter, Phylocluster, without which this work would not have been fea-
sible. D. M. Hillis, T. A. Heath, G. B. Pauly, M. Brandley, E. Jockusch,
R. D. M. Page, and an anonymous reviewer provided comments that
significantly improved this manuscript. JMB acknowledges support
from a Donald D. Harrington fellowship provided by the University of
Texas–Austin and a NSF graduate research fellowship. ARL acknowl-
edges support in the form of a NSF IGERT fellowship in Computational
Phylogenetics and Applications to Biology at the University of Texas—
Austin (DGE-0114387).

REFERENCES

Akaike, H. 1974. A new look at statistical model identification. IEEE
Trans. Automatic Control 19:716–723.

Brandley, M. C., A. Schmitz, and T. W. Reeder. 2005. Partitioned
Bayesian analyses, partition choice, and the phylogenetic relation-
ships of scincid lizards. Syst. Biol. 54:373–390.

Castoe, T. A., T. M. Doan, and C. L. Parkinson. 2004. Data partitions and
complex models in Bayesian analysis: The phylogeny of gymnoph-
thalmid lizards. Syst. Biol. 53:448–469.

Castoe, T. A., and C. L. Parkinson. 2006. Bayesian mixed models and
the phylogeny of pitvipers (Viperidae: Serpentes). Mol. Phylogenet.
Evol. 39:91–110.

Felsenstein, J. 1978. Cases in which parsimony or compatibility meth-
ods will be positively misleading. Syst. Zool. 27:401–410.

Huelsenbeck, J. P., and D. M. Hillis. 1993. Success of phylogenetic meth-
ods in the four-taxon case. Syst. Biol. 42:247–264.

Huelsenbeck, J. P., and B. Rannala. 2004. Frequentist properties
of Bayesian posterior probabilities of phylogenetic trees un-
der simple and complex substitution models. Syst. Biol. 53:904–
913.

Jeffreys, H. 1935. Some tests of significance, treated by the theory of
probability. Proc. Camb. Philos. Soc. 31: 203–222.

Jeffreys, H. 1961. Theory of probability. Oxford University Press,
Oxford, UK.

Kass, R. E., and A. E. Raftery. 1995. Bayes factors. J. Am. Stat. Assoc.
90:773–795.

Lartillot, N., and H. Philippe. 2004. A Bayesian mixture model for
across-site heterogeneities in the amino-acid replacement process.
Mol. Biol. Evol. 21:1095–1109.

Lartillot, N., and H. Philippe. 2006. Computing Bayes factors using
thermodynamic integration. Syst. Biol. 55:195–207.

Lemmon, A. R., and E. C. Moriarty. 2004. The importance of proper
model assumption in Bayesian phylogenetics. Syst. Biol. 53:265–277.

Marshall, D. C., C. Simon, and T. R. Buckley. 2006. Accurate branch
length estimation in partitioned Bayesian analyses requires accom-
modation of among-partition rate variation and attention to branch
length priors. Syst. Biol. 55:993–1003.

Mueller, R. L., J. R. Macey, M. Jaekel, D. B. Wake, and J. L. Boore. 2004.
Morphological homoplasy, life history evolution, and historical bio-
geography of plethodontid salamanders inferred from complete mi-
tochondrial genomes. Proc. Natl. Acad. Sci. USA 101:13820–13825.

Newton, M. A., and A. E. Raftery. 1994. Approximate Bayesian infer-
ence with the weighted likelihood bootstrap. J. R. Stat. Soc. B 56:3–48.

Nylander, J. A. A. 2004. MrModelTest v2. Program distributed by the
author. Evolutionary Biology Centre, Uppsala University.

Nylander, J. A. A., F. Ronquist, J. P. Huelsenbeck, and J. L. Nieves-
Aldrey. 2004. Bayesian phylogenetic analysis of combined data. Syst.
Biol. 53:47–67.

Posada, D., and K. A. Crandall. 1998. ModelTest: Testing the model of
DNA substitution. Bioinformatics 14:817–818.

Raftery, A. E. 1996. Hypothesis testing and model selection. Pages 163–
187 in Markov chain Monte Carlo in practice (W. R. Gilks, S. Richard-
son, and D. J. Spiegelhalter, eds.). Chapman and Hall, New York.

Ronquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylo-
genetic inference under mixed models. Bioinformatics 19:1572–1574.

Swofford, D. L. 2002. PAUP*: Phylogenetic analysis using parsimony
(*and other methods). Version 4.0b10. Sinauer Associates, Sunder-
land, Massachusetts.

Swofford, D. L., G. J. Olsen, P. J. Waddell, and D. M. Hillis. 1996. Phylo-
genetic inference. Pages 407–543 in Molecular systematics, 2nd edi-
tion (D. M. Hillis, C. Moritz, and B. K. Mable, eds.). Sinauer Asso-
ciates, Sunderland, Massachusetts.

Swofford, D. L., P. J. Waddell, J. P. Huelsenbeck, P. G. Foster, P. O.
Lewis, and J. S. Rogers. 2001. Bias in phylogenetic estimation and its
relevance to the choice between parsimony and likelihood methods.
Syst. Biol. 50:525–539.

Wolfram, S. 2003. The Mathematica Book, 5th edition. Wolfram Media,
USA.

Yang, Z., N. Goldman, and A. Friday. 1994. Comparison of models for
nucleotide substitution used in maximum-likelihood phylogenetic
estimation. Mol. Biol. Evol. 11:316–324.

First submitted 17 October 2006; reviews returned 4 January 2007;
final acceptance 1 May 2007

Associate Editor: Elizabeth Jockusch




