

Available online at www.sciencedirect.com

MOLECULAR PHYLOGENETICS AND EVOLUTION

Molecular Phylogenetics and Evolution 44 (2007) 1068-1082

www.elsevier.com/locate/ympev

Phylogeny-based delimitation of species boundaries and contact zones in the trilling chorus frogs (*Pseudacris*)

Emily Moriarty Lemmon^{a,*}, Alan R. Lemmon^a, Joseph T. Collins^{b,c}, Julie A. Lee-Yaw^a, David C. Cannatella^{a,d}

^a Section of Integrative Biology, The University of Texas, 1 University Station C0930, Austin, TX 78712, USA ^b Kansas Biological Survey, University of Kansas, Lawrence, USA

^c Sternberg Museum of Natural History, Fort Hays State University, Hays, KS, USA

^d Texas Memorial Museum, University of Texas, Austin, USA

Received 6 October 2006; revised 11 April 2007; accepted 13 April 2007 Available online 3 May 2007

Abstract

Although the trilling chorus frogs (subclade within *Pseudacris*: Hylidae) have been important in studies of speciation, continental patterns of genetic diversity within and among species have not been elucidated. As a result, this North American clade has been the subject of substantial taxonomic debate. In this study, we examined the phylogenetic relationships among the trilling *Pseudacris* and tested previously hypothesized scenarios for speciation using 2.4 kb of mitochondrial 12S and 16S rRNA genes from 253 populations. Bayesian phylogenetic analyses, in combination with published morphological and behavioral data, support recognition of at least nine species, including an undescribed species from the south-central United States. Evidence is presented for substantial geographic subdivision within *P. brachyphona* (northern and southern clades) and *P. feriarum* (coastal and inland clades). Discordance between morphology/behavior and molecular data in several individuals suggests occasional hybridization between sympatric species. These results require major revision of range limits for several taxa, in particular, *P. maculata, P. triseriata*, and *P. feriarum*. Hypothesis tests using parametric bootstrapping strongly reject previously proposed scenarios for speciation in the group. The tests also support recognition of the geographically restricted taxon *P. kalmi* as a distinct species. Results of this study provide both a firm phylogenetic basis for future studies of speciation in the trilling *Pseudacris* and a taxonomic framework for conservation efforts.

© 2007 Elsevier Inc. All rights reserved.

Keywords: Pseudacris; Trilling chorus frogs; Hybridization; Contact zones; Phylogeography; Cryptic species

1. Introduction

Deciphering the phylogenetic relationships among taxa and determining how the patterns observed relate to known historical events are important to our understanding of speciation. Although the biogeographic origins and higher-order relationships among hylid treefrogs of North America have been elucidated (Middle American Clade; Smith et al., 2005), additional work is required to understand evolutionary relationships within each of the three

* Corresponding author. Fax: +1 512 471 3878.

E-mail address: chorusfrog@mail.utexas.edu (E.M. Lemmon).

main North American genera (*Hyla*, Acris, and Pseudacris). The trilling chorus frogs form a clade within Pseudacris (Moriarty and Cannatella, 2004). The eight putative species (*P. brachyphona*, *P. brimleyi*, *P. clarkii*, *P. feriarum*, *P. kalmi*, *P. maculata*, *P. nigrita*, and *P. triseriata*) generally have parapatric distributions across the continent from northern Mexico to northern Canada and from the East Coast to the Rocky Mountains (Conant and Collins, 1998; Moriarty and Cannatella, 2004). The taxonomic status of half of these species is supported by morphological and behavioral data. The other four taxa (*P. feriarum*, *P. kalmi*, *P. maculata*, *P. triseriata*) were elevated from subspecies to species primarily on the basis of acoustic data,

^{1055-7903/\$ -} see front matter @ 2007 Elsevier Inc. All rights reserved. doi:10.1016/j.ympev.2007.04.010

and there is ambiguity with respect to geographic boundaries based on these data (Platz, 1989; Platz and Forester, 1988). To gain insight into the process of speciation in this group, the phylogenetic relationships and range boundaries of these taxa must first be resolved using genetic data.

Although some trilling chorus frog species are distinguishable based on color pattern or advertisement call structure (Brandt and Walker, 1933; Neill, 1949; Smith, 1934; Walker, 1932); a number of putative lineages are more cryptic. Smith and Smith (1952) and Smith (1956) defined the distributions of several trilling Pseudacris taxa based on geographic patterns of tibia length to body length ratios. By plotting population means of ratios on a map, they identified morphometric clines, which were then used to define the boundaries between taxa. These authors found a general trend of relatively shorter leg lengths in populations from the northwestern USA and Canada and relatively longer legs in populations in the southeastern USA. These morphological differences translate into behavioral differences as well: short-legged frogs tend to walk rather than hop (Smith and Smith, 1952). Taxonomic designations based on these morphological studies have been generally accepted, (Fig. 1; Conant and Collins, 1998) but recent genetic work cast doubt on the accuracy of these designations (Moriarty and Cannatella, 2004). Molecular data point to a need for wider sampling to identify cryptic lineages and to delineate geographic distributions of species.

The trilling chorus frogs have been the subject of important studies of speciation. Fouquette (1975) and Gartside (1980) independently studied the contact zone between P. *feriarum* and P. *nigrita* and found disparate outcomes of secondary contact in different areas of sympatry. In the

Fig. 1. Distributions of four trilling chorus frog taxa based on earlier nongenetic studies. This figure was modified from Conant and Collins (1998), which was largely based on morphometric data of Smith (1956, 1957), and Smith and Smith (1952). Distributions of *Pseudacris brachyphona*, *P. brimleyi*, *P. clarkii*, *P. nigrita*, and *P.* sp. nov. are not shown because ranges of these species have not changed substantially with the addition of genetic data.

Apalachicola River drainage (Florida), the two species show reproductive character displacement of their acoustic signals (Fouquette, 1975). In the Pearl River drainage (Louisiana/Mississippi), they hybridize freely and lack differentiation of calls (Gartside, 1980). Although these apparent differences are extremely interesting from an evolutionary standpoint, what remains unclear is whether these authors examined the same species pair across the contact zone or whether a third species was involved. If a single species pair was studied across the zone, each species, as currently defined, should be monophyletic.

Two scenarios have been put forward to explain the origin of trilling Pseudacris in eastern North America. Smith (1957) proposed that following the Wisconsin glaciation (12-110 ka; Denton and Hughes, 1981; Gibbard and Van Kolfschoten, 2004), P. kalmi diverged from P. triseriata after an eastward expansion of the latter species left relict populations in New Jersey and the Delmarva Peninsula (Fig. 2). These relict populations became what is now called P. kalmi. Therefore, P. kalmi and P. triseriata are predicted to be sister species. Smith (1957) also proposed that when P. triseriata expanded eastward, it bisected the range of the widespread P. feriarum, leaving populations of P. feriarum in the eastern Great Lakes region that were isolated from the main distribution of the species (Fig. 2). Thus, populations in the Great Lakes region are predicted to form a monophyletic group with other P. feriarum populations. These scenarios of migration and divergence were based on morphometric data for chorus frogs throughout North America (Smith, 1956; Smith and Smith, 1952), but these hypotheses have not been tested within a genetic framework.

The goals of this study are twofold. First, we elucidate the phylogenetic relationships and establish geographic ranges of the trilling *Pseudacris*, using 2.4 kb of mitochondrial DNA from a dense taxon sample. Second, we test three scenarios for speciation and the associated taxonomic hypotheses, based on assumptions or predictions of previous authors. Detailed tests of timing of speciation and geographic expansion are presented elsewhere (Lemmon et al., in press). The results of this study advance our understanding of the patterns and processes of speciation in this group. In addition, identification of more precise species distributions facilitates efforts to conserve these frogs.

2. Methods

2.1. Sampling

We sampled chorus frogs from 253 populations (258 total individuals) across North America (Fig. 3; Appendix A). Approximately 30% of the populations were collected by EML; 10% were borrowed from museum or personal tissue collections; the remaining 60% were collected for this project by herpetologists across the continent (Appendix A; see Acknowledgments). Appropriate scientific permits were

Fig. 2. Scenarios for migration and speciation in the trilling *Pseudacris* proposed by Smith (1957). According to this scenario, the distribution of the wideranging *P. feriarum* (a) was bisected by eastward expansion of *P. triseriata* (b), leading to geographic isolation of northern *P. feriarum* populations (c). *Pseudacris triseriata* reached the East Coast where it left relict populations when its range contracted (d). These relict populations are now known as *P. kalmi*.

Fig. 3. Updated distributions of all North American Trilling Frogs. Species boundaries are based on the phylogeny (Fig. 4) and county-level taxon records from Lannoo (2005). Markers indicate populations sampled that correspond to species in the phylogeny to the right. Ranges of *Pseudacris brachyphona* and *P. brimleyi* are outlined in black for visual simplicity. Capital letters indicate hybrids and represent the following hybrid combinations: NS–*P. nigrita– P. sp.* nov., BF–*P. brachyphona–P. feriarum*, BT–*P. brachyphona–P. triseriata*, and NK–*P. nigrita–P. kalmi*, where the first species listed refers to the behavioral/morphological identity and the second to the mitochondrial DNA identity of the individual. Degree of geographic overlap between species is indicated on map if known; if no overlap is shown between parapatric taxa, then the amount of overlap is unknown.

1071

obtained for collection of specimens. The sample includes 16 basal Pseudacris populations (outgroups: Pseudacris regilla, P. cadaverina, P. crucifer, P. ocularis, P. ornata, P. streckeri, and P. illinoensis) and 237 trilling Pseudacris populations (ingroup: P. brachyphona, P. brimleyi, P. maculata, P. clarkii, P. nigrita, P. sp. nov., P. kalmi, P. feriarum, P. triseriata; Moriarty and Cannatella, 2004). Our sample encompasses all currently described chorus frog species, with the exception of two recently resurrected members of the P. regilla species group (Recuero et al., 2006). We focused our sampling efforts on potential contact zones among taxa, particularly along major river drainages and mountain systems, as well as on the edges of species' distributions. Tissues were either frozen in liquid nitrogen or placed in tissue buffer or 95% ethanol and then stored at -80 °C. Specimens were deposited into museums listed in Appendix A.

2.2. DNA sequencing and data alignment

Following the methods described in Moriarty and Cannatella (2004), we sequenced eight DNA fragments from a \sim 2.4-kb region spanning the 12S, tRNA^{Val}, and 16S mitochondrial rRNA genes. Contiguous sequences were constructed using Sequencher 4.5 (GeneCodes). Sequences were aligned in Clustal X 1.8 (Thompson et al., 1997) and the alignment was manually checked in MacClade (4.08; Maddison and Maddison, 2005). Uneven leading and trailing sequence as well as ambiguously aligned regions were identified in MacClade and excluded from further analysis. The 12S, tRNA^{Val}, and 16S genes were used as character partitions described below. To maximize the genetic diversity and geographic area sampled, we sequenced 1-2 individuals from many populations rather than several individuals from fewer populations. This sampling minimized the number of redundant haplotypes in the dataset, which were omitted from phylogenetic analyses. All sequences were deposited in Genbank (Appendix A) and the dataset was deposited in TreeBase (www. treebase.org; S1802).

2.3. Phylogenetic methods

We used a Bayesian approach to estimate phylogenetic relationships. To determine the appropriate model of evolution for each of the three partitions (12S: GTR + I + G, $tRNA^{Val}$: TRN + I, 16S: GTR + I + G), we employed the Akaike information criterion (Akaike, 1974) as implemented in MODELTEST 3.06 (Posada and Crandall, 1998). Since the TRN + I model is not available in MrBayes 3.1.1 (Ronquist and Huelsenbeck, 2003), we used the more general GTR + I model because overparameterization is less likely to cause bias than underparameterization (Lemmon and Moriarty, 2004). We performed six separate partitioned Bayesian analyses (with four heated chains per analysis) using MrBayes with default prior (prset) and proposal (prop) settings. All parameters were

unlinked across partitions except branch lengths, which were not unlinked for two reasons. First, we desired branch lengths that represented the average number of substitutions per site across the entire region sequenced. Second, because recombination among mitochondrial partitions is unlikely, all partitions share a common gene tree.

The posterior probability distribution was estimated using the last 75% of the Markov chain samples. Convergence of the Markov chains on the posterior distribution was assessed by comparing bipartition posterior probability estimates across the six runs. We sampled from the chains every 1000 generations until the maximum standard deviation of bipartition posterior probability estimates across runs was less than 0.0625. Running the chains until this level of agreement among the independent runs was reached assured that the runs converged on the posterior distribution and that enough samples were taken to estimate the phylogeny accurately. We also compared distributions for the model parameters across the six runs, which reached stationarity at 3000 samples. A total of 92,682 samples was used to estimate the posterior distribution. A fully resolved tree was obtained by constructing a majority-rule consensus tree from the posterior distribution. Branch lengths were estimated as the average across the 92,682 samples.

2.4. Phylogenetic hypothesis testing

We tested three previously proposed taxonomic hypotheses concerning the phylogenetic origin of Pseudacris lineages. Hypothesis 1 posits that P. kalmi populations from New Jersey and the Delmarva Peninsula are relict populations of P. triseriata from an eastward expansion of the latter species. Therefore, P. kalmi is predicted to be most closely related to P. triseriata (Smith, 1957; Fig. 2). Hypothesis 2 predicts that chorus frogs in southeastern Ontario and New York are relict P. feriarum from a northward expansion of the species (Smith, 1957; Fig. 2). Hypothesis 3 states that chorus frogs in Louisiana, Arkansas, and westward are P. feriarum (Fouquette, 1975; Gartside, 1980; Smith and Smith, 1952). Following Moriarty and Cannatella (2004), we used a parametric bootstrapping approach to test these hypotheses. The null hypotheses are: (1) P. kalmi and P. triseriata populations form a monophyletic group, (2) P. feriarum, southeastern Ontario, and New York populations form a monophyletic group, and (3) eastern and western P. feriarum populations form a monophyletic group. For computational efficiency, we used subsets of the full dataset for each test; each subset included up to 10 geographically dispersed populations of the focal species, 3 populations of each of the other trilling Pseudacris species, and 3 representative outgroups. This arrangement produced datasets of 47, 58, and 51 terminals, respectively (see Appendix A for populations included).

Fig. 4. Bayesian phylogeny of *Pseudacris*. Tree a shows the phylogenetic relationships of the entire genus. Numbers of populations sampled from each species are indicated in parentheses. Trees b–e illustrate the population-level relationships of each subclade. Each tip on the phylogeny is described by a field number, state/province, and county/region of origin. Bayesian posterior probabilities above 50% are located near corresponding branches. Species names in parentheses indicate the morphological/behavioral identity of individuals when this conflicted with the mitochondrial clade identity. Note that the branch length scale for phylogeny a is 25% of the scale for phylogenies b–e.

2.5. Designating species

Geographic populations corresponding to haplotype clades were assigned species names based on the

inclusion of the type locality within the range of the haplotype clade. Each major haplotype clade contained not more than one type locality, and therefore species designations were straightforward. Type locali-

Fig. 4 (continued)

ties for the trilling chorus frogs are listed by Frost (2006).

3. Results

3.1. Phylogenetic relationships

A dataset of 2401 characters was used for the phylogenetic analyses, after exclusion of 164 edge or ambiguously aligned sites; 685 sites were variable and 567 were parsimony-informative. Twelve individuals with redundant haplotypes were identified from the 258 sequences (Appendix A). The phylogeny shows strong support for the monophyly of most currently recognized trilling *Pseudacris* species (Fig. 4a).

Pseudacris feriarum is the sister taxon of P. triseriata. There is geographic separation of P. feriarum into a coastal lineage and an inland lineage, separated roughly by the Altamaha River in eastern Georgia (Fig. 4e; following the nomenclature of Wright and Wright, 1949). The distribution of P. triseriata is more restricted than previously described (Smith, 1956, 1957; Smith and Smith, 1952; Figs. 1 and 3). The New Jersey/Delmarva Peninsula native, P. kalmi, is the sister taxon of the P. feriarum + P. triseriata clade (Fig. 4e). Pseudacris nigrita is the sister lineage to an undescribed species (P. sp. nov.; Fig. 4d), previously thought to be a western extension of P. feriarum. Pseudacris nigrita + P. sp. nov. form the sister clade of P. triseriata + P. feriarum + P. kalmi (Fig. 4a). The P. maculata/P. clarkii clade (Fig. 4c) is the sister-group of these five species (Fig. 4a). Although P. maculata and P. clarkii are readily distinguishable in sympatry by morphology and behavior, their mitochondrial gene trees are not reciprocally monophyletic, suggesting recent mitochondrial introgression or incomplete lineage sorting. In concordance with Moriarty and Cannatella (2004), P. brachyphona and P. brimleyi are sister species (Fig. 4b); this clade is the sister taxon of the remaining trilling Pseudacris (Fig. 4a). There is no clear support for reciprocal monophyly of the gene trees of these two species, despite their allopatry and morphological differentiation, suggesting incomplete lineage sorting. Within P. brachyphona there is geographic division into a northern lineage and a southern lineage (Fig. 4b).

3.2. Phylogenetic hypothesis tests

The parametric bootstrapping results do not support previous hypotheses regarding the biogeographic origin of trilling chorus frogs. In all three tests, the null hypothesis was rejected. Test 1 indicates that populations of *P. kalmi* in New Jersey and the Delmarva Peninsula are not simply relictual *P. triseriata* (P = 0.028). In fact, the phylogeny indicates that *P. kalmi* separated from an ancestral lineage of *P. triseriata* and *P. feriarum* prior to the divergence of the latter two species (Fig. 4). Based on this phylogenetic evidence and also previous work on advertisement calls (Platz and Forester, 1988), we advocate continued recognition of *P. kalmi* as a distinct species. Test 2 shows that southeastern Ontario and New York populations are not derivatives of *P. feriarum* (P < 0.002). Rather, these populations encompass a contact zone between *P. maculata* and *P. triseriata* (Figs. 3 and 4). Test 3 indicates that the distribution of *P. feriarum* does not extend from Pennsylvania to Texas (P < 0.002). Instead, populations in Louisana, Arkansas, and westward represent a new species of chorus frog, which is the sister taxon of *P. nigrita* (Figs. 3 and 4). This previously unidentified species is currently being described elsewhere (Lemmon et al., unpublished manuscript).

3.3. Evidence for hybridization

The phylogeny points to several cases where the mitochondrial clade to which an individual belongs does not correspond to its morphological and behavioral identity. In particular, we found evidence for hybridization between: *P. kalmi–P. nigrita* (1 individual), *P. feriarum–P. brachyph*ona (2), *P. triseriata–P. brachyphona* (1), and *P.* sp. nov.–*P.* nigrita (1; Figs. 3 and 4; Appendix A). In each of these cases, the mitochondrial clade to which an individual belongs is listed first and the identity of the individual based on morphological and acoustic data is listed second. The data do not allow us to distinguish between recent hybrids and advanced-generation hybrids. These results support the idea that occasional introgression occurs between trilling *Pseudacris* lineages.

4. Discussion

4.1. Species diversity within the trilling chorus frogs

Our phylogenetic analysis of mitochondrial lineages and tests of speciation hypotheses support the recognition of at least nine species within the trilling *Pseudacris* clade: *P. brachyphona*, *P. brimleyi*, *P. clarkii*, *P. feriarum*, *P. kalmi*, *P. maculata*, *P. nigrita*, *P. sp.* nov., and *P. triseriata*. These analyses are corroborated by previously published behavioral and morphological data. Revised range distributions of these taxa are shown in Fig. 3. We also found evidence for substantial genetic and geographic structure within *P. brachyphona* (northern and southern clades) and *P. feriarum* (coastal and inland clades), but we refrain from decisions about splitting these taxa until morphological, ecological, or behavioral differentiation between lineages of these species has been demonstrated.

An interesting finding is that *P. maculata* and *P. clarkii* are not genetically differentiated with respect to their mitochondrial DNA. If only the mitochondrial gene trees were considered, *P. clarkii* would be synonymized under *P. maculata*. However, substantial differences in morphology and behavior exist (Smith, 1934; Lemmon et al., unpublished manuscript), suggesting that the mitochon-

drial pattern results from hybridization and/or incomplete lineage sorting. Evidence suggests that both processes may be occurring in this species pair. Fieldwork in the contact zone has yielded individuals with intermediate advertisement calls and morphology between the two species, supporting the hypothesis of hybridization (Lemmon et al., unpublished data). On the other hand, the fact that allopatric P. clarkii populations far from the contact zone (west and south Texas) do not form a separate clade from P. maculata, is more suggestive of incomplete lineage sorting (Figs. 3 and 4). In this scenario, the two species have undergone rapid morphological and behavioral differentiation relative to molecular divergence, resulting in taxa with distinct phenotypes and acoustic signals that are not, however, reciprocally monophyletic. Data from nuclear markers are needed, however, to determine whether hybridization or incomplete lineage sorting contributed more to the patterns of genetic variation observed. Given the degree of morphological and behavioral divergence between the taxa, we maintain P. maculata and P. clarkii as separate species, until further data suggest otherwise.

This study provides genetic identification for several marginal populations of uncertain origin including P. maculata from Arizona and New Mexico (formerly P. triseriata; Smith and Smith, 1952; Platz, 1989), disjunct P. feriarum from Berkeley, Charleston, and Dorchester Counties, South Carolina (P. feriarum; Schwartz, 1957), disjunct P. nigrita from eastern Virginia (new state record; Hobson and Moriarty, 2003), and P. maculata and P. triseriata from southeastern Ontario (formerly P. triseriata only Bleakney, 1959; Cook, 1964; Figs. 3 and 4). In addition, this study provides strong support for recognition of the geographically restricted taxon, P. kalmi (formerly P. feriarum kalmi, Hedges, 1986) as a distinct species. Furthermore, we have found evidence for a new cryptic species of chorus frog, previously undetected within P. feriarum (Smith and Smith, 1952). In fact, this new species is the sister species of P. nigrita, with which it forms a narrow hybrid zone in the Pearl River drainage along the boundary between southern Louisiana and Mississippi (Gartside, 1980; Figs. 3 and 4d).

Earlier studies of the contact zone between *P. nigrita* and presumed "*P. feriarum*" in the Apalachicola River drainage of Florida (Fouquette, 1975) and the Pearl River drainage of Louisiana and Mississippi (Gartside, 1980) found disparate outcomes of secondary contact between these taxa. Fouquette (1975) observed a strong pattern of reproductive character displacement between taxa and found no evidence for hybridization, although an allozyme study of Gartside (1980) described a high frequency of hybridization between taxa (center of zone has 60% hybrids). We purposely sampled the majority of the *P. feriarum* populations examined in the Fouquette (1975) and Gartside (1980) studies to ascertain their taxonomic identity and found that all Fouquette (1975) localities are true *P. feriarum* (inland clade) and all Gartside

(1980) localities are a third, cryptic species, *P*. sp. nov. (Figs. 3 and 4). This clarifies why there is a higher incidence of hybridization along the Pearl River (sister taxa) compared to the apparently low incidence along the Apalachicola River (non-sister taxa). Our results indicate that reproductive character displacement occurs between non-sister species in this group (*P. nigrita* and *P. feriarum*; Figs. 3 and 4; Fouquette, 1975).

Results of the parametric bootstrapping tests have important implications for both conservation and speciation in chorus frogs. The tests do not support the biogeographic scenarios proposed by Smith (1957) for speciation in the trilling *Pseudacris* (Figs. 2 and 3). Intriguingly, however, one of the morphological clines identified by Smith and Smith (1952) corresponds very closely to boundaries between mitochondrial lineages. These authors found a steep cline in relative leg length that runs perpendicular to a line stretching from southern Indiana and Illinois (Ohio River drainage), across the boundary between Missouri and Arkansas, and into eastern Oklahoma (Fig. 1). They interpreted this line as the boundary between P. feriarum and P. triseriata. Our data show that, in fact, four lineages come into contact along this line: P. feriarum and P. triseriata in the east and P. maculata/clarkii and P. sp. nov. in the west (Fig. 3). Although Smith and Smith (1952) did not find east-west morphological differentiation at species boundaries, they were able to identify the border between the two north-south species pairs. The congruence between molecular and morphological data provides further support for delineation of these species boundaries.

4.2. Evidence for hybridization among species

An interesting pattern that emerges is that most trilling Pseudacris lineages hybridize with nearby relatives. Prior to this study, natural hybridization was known only between P. nigrita and P. sp. nov. (Gartside, 1980) and between P. clarkii and P. sp. nov. (Michaud, 1964), although laboratory experiments had demonstrated viability of several other hybrid crosses (Mecham, 1965). We show evidence for sporadic mitochondrial introgression in nature between three additional species pairs: P. kalmi-P. nigrita, P. feriarum-P. brachyphona, and P. triseriata-P. brachyphona as well as further evidence for hybridization between P. sp. nov-P. nigrita. These data suggest that despite large differences in reproductive behaviors (measured by acoustic signals, Lemmon et al., unpublished manuscript), frogs occasionally fail to avoid heterospecific mates. The potential for hybridization can lead to reinforcement (Howard, 1993) and, in some cases, result in differentiation of reproductive signals in sympatry (Fouquette, 1975). This pattern of hybridization underlines the importance of using multiple lines of evidence to delimit species (e.g., morphology, genetics, behavior). It also illustrates the usefulness of mitochondrial genes in identifying areas of genetic admixture.

Future studies should incorporate nuclear markers to establish the utility of mitochondrial DNA in defining species boundaries.

4.3. Implications for conservation of Pseudacris

Declining amphibian species have been reported from many regions of North America where Pseudacris are found (Gray and Brown, 2005; Reeder et al., 2005; Rorabaugh, 2005). Whereas several other frog taxa (in particular, Rana and Acris) have experienced declines in parts of the United States, Pseudacris populations appear less affected or stable in some areas (Corn et al., 1989; Fisher and Shaffer, 1996). This disparity may be due, in part, to the different natural histories of these taxa. Although Acris and Rana spend much of their life cycle near their natal ponds, Pseudacris disappear from breeding ponds after metamorphosis, dispersing to nearby fields and woods, and returning only for the next year's brief breeding season (Kramer, 1973; Kramer, 1974). Because a number of emerging amphibian diseases are transmitted via water (Daszak et al., 1999; Jancovich et al., 2001; Lips et al., 2006), Pseudacris may have an advantage over more aquatic frogs by avoiding bodies of water for the majority of their life cycle.

There are some notable exceptions, however, to the overall pattern of stability in chorus frog populations. Recent field surveys have suggested that several species are declining in parts of the northeastern USA and southeastern Canada (Gibbs et al., 2005; Picard and Desroches, 2004; Pollio and Kilpatrick, 2002; Sias, 2006; Weeber and Vallianatos, 2000; J. Andrews and M. Ferguson, unpublished data; C. Pollio, unpublished data). In addition, several species have been listed by state wildlife agencies as species of conservation concern (P. feriarum: Pennsylvania, West Virginia; P. triseriata: Pennsylvania; P. brachyphona: Pennsylvania; P. maculata: Michigan), state threatened (P. brachyphona: Maryland), or state endangered (P. kalmi: Pennsylvania). In southeastern Ontario and New York, surveys have found that eastern populations have declined but the western populations appear stable (Gibbs et al., 2005; Picard and Desroches, 2004; F. Schueler, unpublished data). Our data indicate that declining eastern populations are P. maculata whereas stable western populations are P. triseriata (Fig. 3). The apparent declines have been attributed to several factors, including habitat loss, agricultural runoff, and industrial pollution (Gibbs et al., 2005; Pollio and Kilpatrick, 2002; Sias, 2006). Clearly, more focused research is needed to track the causes of these declines. Our study contributes to conservation efforts by defining the taxonomic status and range limits of these taxa. Currently, the trilling *Pseudacris* species that presents the most urgent conservation challenge is the New Jersey Chorus Frog, P. kalmi. In this study we have demonstrated that P. kalmi is a distinct species. Due to its restricted range, which is located in one of the most densely populated areas of the USA, P. kalmi faces extinction particularly through habitat loss. Conservation measures must be undertaken immediately to preserve the remaining populations of this species.

Acknowledgments

We express our gratitude to the many biologists who assisted with collection of specimens: J.J. Apodaca, J.D. Austin, D. Bartlett, C. Beachy, D. Beamer, D.J. Beckett, P.B. Berendzen, W. Bird, S. Bishop, R. Blasus, J.P. Bogart, J. Boundy, A. Braswell, J. Briggler, D. Britton, K. Brunson, A. Bufalino, B. Butterfield, C. Camp, S. Casley, K. Coleman, S.L. Collins, E. Conrad, W. Cook, J.A. Crawford, J.G. Davis, J. Delahoussaye, J.F. Doolen, M. Dorcas, B.S. Edmond, M. Ellis, J. Englebert, T. Floyd, E. Forbes, N.B. Ford, D.C. Forester, D. Franz, T. Gamble, W.R. Gates, G. Glowacki, D.M. Green, R. Green, M. Gridi-Papp, W. Grogan, J. Gubanyi, M. Gumbert, C. Guyer, J. Hackler, C. Hall, D. Hall, K. Hamed, J. Harding, D. Henry, A.M. Heupel, R. Highton, W.G. Hildebrand, C. Hobson, J.E. Hohman, E.D. Hooper, Jr., T.R. Hunkapiller, K.J. Irwin, L.K. Irwin, J.B. Iverson, J.L. Jackson, R. Jadin, J.R. Jakubanis, J.B. Jensen, S. Johnson, J.E. Juterbock, A.M. Kelly, J.D. Kirk, W. Knapp, J. Knight, K. Knight, A.R. Kuhns, T. LaDuc, T. Lamb, N. Lang, M. Lannoo, R. Lardie, J. LeClere, M. Leung, J. Littrell, B. Mable, J.R. MacGregor, S.P. Mackessy, A.L. Markezich, T. Mason, M. McCallum, M. McCort, J. McGrath, W. McLeish, J. McLister, S.R. McNearney, R. Means, J. Mendelson, E.J. Menzel, C.A. Moriarty, J. Moriarty, B.C. Nagel, D. Neely, C. Painter, N. Parker, J. Parmalee, T.K. Pauley, G. Pauly, P. Peak, S. Perrill, J.E. Petzing, D. Pfennig, K. Pfennig, C.A. Phillips, J. Poisson, S. Price, A. Pyron, J. Richards, S.C. Richter, S.M. Roble, K. Roblee, J. Rosales, B. Russell, L. Rye, A. Savitzky, B. Savitzky, C.J. Schmidt, D. Scott, J. Settles, D. Shepard, J. Sias, C. Siler, B.E. Smith, S.A. Smith, E. Stegall, N. Stephens, D. Stevenson, J. Stoklosa, J. Stringer, R. Symula, T.W. Taggart, A.S. Taylor, E. Thiss, Libby Thiss, Linnea Thiss, F. Thoennes, M. Toncray, M. Torocco, J. Trauth, S. Trauth, J.K. Tucker, G. Weatherman, S. Whalen, E. Wild, J. Young, and R.T. Zappalorti.

We are grateful to the following institutions for providing support during field research: Auburn University, East Carolina University, Florida Department of Environmental Protection, Grice Marine Laboratory, Old Dominion University, Southern Institute for Forest Genetics, and University of North Carolina, Chapel Hill. We also thank Kristin Hook, Greg Pauly, Santiago Ron, Juan Carlos Santos, Dan Scantlebury, Beckie Symula, Allan Larson and one anonymous reviewer for providing valuable comments on the manuscript.

This work was supported by NSF Graduate Research Fellowships and NSF IGERT Fellowships in Computational Phylogenetics and Applications to Biology (DGE-0114387) to E.M. Lemmon and A.R. Lemmon, a Doctoral Dissertation Improvement Grant (0309309) to E.M. Lemmon under IACUC protocol #02112201 and NSF 9981631 to D. Cannatella.

Appendix A

The appendix uses updated taxonomy for each population. Field number, museum voucher number, and GenBank Accession Numbers are listed. Specimens with the same superscript letter following the field number have identical haplotypes. Putative hybrids are denoted by the following symbols after the field number: α (P. brachyphona with P. feriarum mtDNA), β (P. brachyphona with P. triseriata mtDNA), ε (P. nigrita with P. sp. nov. mtDNA), and ϕ (P. nigrita with P. kalmi mtDNA). A "n/a" under the museum number header means no voucher specimen is available for that specimen. Vouchers that have not been cataloged are listed as such for respective collections. Superscript numbers following the museum numbers refer to footnotes at the end of the appendix. An asterisk next to a GenBank Number indicates previously published sequences from Moriarty and Cannatella (2004). The test column denotes which taxa were used in each of the three parametric bootstrapping tests (e.g. ECM0041 was included in all three tests). State or province of origin and county, township, or region information is listed for each specimen in addition to GPS coordinates. Museum collection codes are as follows: Arkansas State Museum Herpetology Collection, Jonesboro (ASUMZ), Bell Museum of Natural History, Minneapolis (JFBM), Canadian Museum of Nature, Ottawa (CMN), Cincinnati Museum Center, Museum of Natural History and Science (CMC), Illinois Natural History Survey (INHS), Museum of Vertebrate Zoology, Berkeley (MVZ), North Carolina State Museum of Natural History, Raleigh (NCSM), Royal Ontario Museum, Toronto (ROM), Smithsonian National Museum of Natural History, Washington, D.C. (USNM), Sternberg Museum of Natural History, Fort Hays State University (MHP), Texas Natural History Collection, University of Texas, Austin (TNHC), University of Alabama Herpetology Collection, Tuscaloosa (UAHC), and University of Kansas Museum of Natural History, Lawrence (KU).

List of Pseudacris specimens included in this study

Species	Field no.	Museum no.	GenBank No.	Test	State/Prov.	County/Twshp.	Latitude	Longitude
P. brachyphona	ECM0040	TNHC62303	AY291095*		AL	Tallapoosa	33.0064	-85.7603
P. brachyphona	ECM0041 ^A	TNHC62304	EF472011	123	AL	Tallapoosa	33.0064	-85.7603
P. brachyphona	ECM0111	TNHC62305	EF472014		AL	Elmore	32.5175	-86.0071
P. brachyphona	ECM0198	TNHC62315	EF472022		KY	Madison	37.6503	-84.2417
P. brachyphona	ECM0452	TNHC63121	EF472012		AL	Lawrence	34.3344	-87.3503
P. brachyphona	ECM0974a	TNHC63443	EF472190		MS	Itawamba	34.1679	-88.3754
P. brachyphona	ECM1131	n/a	EF472013	123	GA	Walker	34.7048	-85.2819
P. brachyphona	ECM1897 ^A	NCSM71330	EF472017		NC	Cherokee	35.0414	-84.0520
P. brachyphona	ECM2070	n/a	EF472028		OH	Washington	39.5478	-81.2141
P. brachyphona	JA-06-01	UAHC15645	EF472016		AL	Hale	32.9222	-87.4403
P. brachyphona	JA-06-10	UAHC15646	EF472015		AL	Cleburne	33.5136	-85.8284
P. brachyphona	JTC2457	TNHC62402	EF472019		KY	Laurel	37.1333	-84.1333
P. brachyphona	JTC2609	TNHC63535	EF472020	123	OH	Hocking	39.4161	-82.6018
P. brachyphona	JTC2616	TNHC63389	EF472021		KY	Taylor	37.2469	-85.3197
P. brachyphona	JTC2619	TNHC63387	EF472023		KY	Powell	37.8169	-83.6811
P. brachyphona	JTC2669	TNHC66044	EF472018		WV	Harrison	39.2715	-80.5192
P. brachyphona	JTC2705	TNHC66046	EF472026		WV	Wayne	38.1679	-82.3779
P. brachyphona	JTC2834	TNHC66047	EF472027		WV	Wetzel	39.5597	-80.5567
P. brachyphona	JTC3084	CMC10360	EF472031		OH	Adams	38.7156	-83.3233
P. brachyphona	JTC3086 β	MHP12900	EF472183		KY	Bullitt	37.8636	-85.6356
P. brachyphona	JTC3092	MHP12896	EF472030		TN	Sullivan	36.4866	-82.0717
P. brachyphona	JTC3104	MHP12898	EF472029		KY	Harlan	36.9279	-83.2154
P. brachyphona	R. Highton71747a	R. Highton uncat. ^a	AY291096*		KY	Lincoln	37.4358	-84.6878
P. brachyphona	R. Highton97-5	n/a	EF472024		WV	Raleigh	37.7489	-80.9236
P. brachyphona	R. Highton97-7	n/a	EF472025		VA	Bland	37.0372	-81.1094
P. brimleyi	ECM0079	TNHC62337	AY291094*	123	NC	Pitt	35.7006	-77.4094
P. brimleyi	ECM0460	TNHC63571	EF472033		NC	Sampson	35.0992	-78.4772
P. brimleyi	ECM0469	TNHC63573	EF472036		NC	Craven	35.1892	-77.0814
P. brimleyi	ECM0612	TNHC63667	EF472032		VA	Prince George	37.1229	-77.1094
P. brimleyi	ECM1077	TNHC63669	EF472035	123	VA	Suffolk City	36.6930	-76.6953
P. brimleyi	ECM1100	TNHC63670	EF472034		VA	Isle of Wight	36.8666	-76.6194
P. brimleyi	R. Highton67234	R. Highton uncat.	EF472037	123	SC	Orangeburg	33.3227	-80.4137
P. brimleyi	R. Highton68852	R. Highton uncat.	EF472038		SC	Hampton	32.5594	-81.2844
P. cadaverina	ECM0150	TNHC62247	EF472006	2	CA	San Bernardino	34.1132	-117.1422
P. clarkii	ECM0210	TNHC63497	EF472105		KS	Comanche	37.1247	-99.3258
P. clarkii	ECM1133	TNHC63548	EF472102	123	OK	Garfield	36.3956	-97.8784
P. clarkii	ECM1143	TNHC63159	EF472103	123	TX	Swisher	34.6464	-101.5722
P. clarkii	ECM2467	TNHC65044	EF472107		KS	Chautauqua	37.0401	-96.1815
P. clarkii	ECM2478	TNHC65763	EF472106		TX	Caldwell	30.0205	-97.6946
							(continued a	on next page)

Appendix A (continued)

Species	Field no.	Museum no.	GenBank No.	Test	State/Prov.	County/Twshp.	Latitude	Longitude
P. clarkii	JTC2454 ^E	TNHC63533	EF472109		KS	Barber	37.0139	-98.6492
P. clarkii	JTC2455 ^E	TNHC63534	EF472108		KS	Barber	37.0139	-98.6492
P. clarkii	JTC2828	TNHC63138	EF472104	123	TX	Cameron	26.1809	-97.5198
P. clarkii	Q-1	KU289035	AY291093*		KS	Chautauqua	37.0044	-96.2764
P. crucifer	ECM0039	TNHC62210	AY291099*		AL	Barbour	32.0369	-85.0889
P. crucifer	ECM0083	TNHC62216	AY291100*	123	SC	Barnwell	33.3177	-81.4840
P. crucifer	ECM0166	TNHC62221	EF472007		MD	Kent	39.3122	-75.8485
P. crucifer	Y-1	TNHC62369 ^b	AY291103*		FL	Lake	29.0833	-81.5833
P. feriarum	ECM0122	TNHC62268	EF472173		AL	Elmore	32.5175	-86.0071
P. feriarum	ECM0126	TNHC62380	EF472189	23	MO	Dunklin	36.2435	-89.9622
P. feriarum	ECM0129	TNHC62271	EF472169		TN	Weakley	36.2579	-88.6676
P. feriarum	ECM0131	TNHC62273	EF472170		TN	Obion	36.2579	-89.2597
P. feriarum	ECM0135	TNHC62276	EF472176		TN	Obion	36.4529	-89.3035
P. feriarum	ECM0180	TNHC62280	EF472202		MD	Prince George	38.6909	-77.0137
P. feriarum	ECM0181	TNHC62385	EF472206		NC	Wake	35.6238	-78.8999
P. feriarum	ECM0189	TNHC62287	EF472205		NC	Chatham	35.8530	-79.1271
P. feriarum	ECM0232	TNHC63303	EF472167	123	FL	Liberty	30.1626	-85.0666
P. feriarum	ECM0298	TNHC63326	EF472196		GA	Banks	34.3322	-83.5654
P. feriarum	ECM0368	TNHC63322	EF472175		FL	Calhoun	30.2847	-85.1073
P. feriarum	ECM0382	TNHC63323	EF472177		FL	Gasden	30.6591	-84.8323
P. feriarum	ECM0383	TNHC63358	EF472172		GA	Decatur	30.9081	-84.5979
P. feriarum	ECM0384	TNHC63359	EF472178		GA	Seminole	31.0223	-84.8292
P. feriarum	ECM0386	TNHC63122	EF472174		AL	Henry	31.6083	-85.0710
P. feriarum	ECM0387	TNHC63123	EF472168		AL	Macon	32.5290	-85.6016
P. feriarum	ECM0399	TNHC63685	EF472163		TN	Hamilton	35.1915	-85.2459
P. feriarum	ECM0400	TNHC63133	EF472161		AL	Macon	32.4703	-85.6908
P. feriarum	ECM0402	TNHC63333	EF472179		GA	Baker	31.3835	-84.5430
P. feriarum	ECM0441	TNHC63537	EF472197	23	SC	Dorchester	32.9552	-80.2613
P. feriarum	ECM0446	TNHC63361	EF472171	123	GA	Floyd	34.4076	-85.2216
P. feriarum	ECM0448	TNHC63362	EF472180		GA	Heard	33.2765	-85.1211
P. feriarum	ECM0453	TNHC63562	EF472208		NC	Sampson	35.1418	-78.5562
P. feriarum	ECM0455	TNHC63564	EF472201		NC	Johnson	35.4392	-78.3706
P. feriarum	ECM0464	TNHC63567	EF472212	123	NC	Davie	35.8982	-80.5764
P. feriarum	ECM0481	TNHC63627	EF472200		VA	York	37.1779	-76.5007
P. feriarum	ECM0486 ¹	TNHC63642	EF472209		VA	Mathews	37.4451	-76.3424
P. feriarum	ECM0601 ¹	TNHC63643	EF472204		VA	Mathews	37.4451	-76.3424
P. feriarum	ECM0602	TNHC63364	EF472203	23	GA	Appling	31.9522	-82.3848
P. feriarum	ECM0630	TNHC63520	EF472217	123	MD	Harford	39.5078	-76.2195
P. feriarum	ECM0632	TNHC63522	EF472198		MD	Baltimore	39.4964	-76.7617
P. feriarum	ECM0665	TNHC63644	EF472207		VA	Prince George	37.1229	-77.1094
P. feriarum	ECM0960	TNHC63465	EF472162		AL	Conecuh	31.3546	-87.0267
P. feriarum	ECM0961 ^{rr}	TNHC63466	EF472188		AL	Choctaw	31.7484	-88.1277
P. feriarum	ECM0969 ^{rr}	TNHC63467	EF472191		AL	Pickens	33.0979	-88.2033
P. feriarum	ECM0970	TNHC63439	EF472192	123	MS	Oktibbeha	33.4282	-88.8768
P. feriarum	ECM0971	TNHC63440	EF472193		MS	Lafayette	34.4114	-89.3729
P. feriarum	ECM0992	TNHC63468	EF472186	23	AL	Cullman	34.0928	-86.8825
P. feriarum	ECMI0II	TNHC63645	EF472214		VA	Prince Edward	37.0973	-78.4770
P. feriarum	ECM10/6	TNHC63652	EF4/2216		VA	Southampton	36.7804	-77.2316
P. feriarum	ECM1125	n/a	EF4/2218		GA	Walton	33.7948	-83.7132
P. feriarum	ECM1130	n/a	EF4/218/		GA	Houston	32.4960	-83.60//
P. feriarum	ECM1435	TNHC65775	EF4/2221		SC	Greenwood	34.1505	-82.1591
P. feriarum	ECM1454	I NHC65/4/	EF4/2220		GA	Greene	33.5/45	-83.2012
P. feriarum	F-I	KU289227	AY291084*		KY	Calloway	36.6333	-88.2667
P. jeriarum	INHS1196	INH518810	EF4/2181			Pulaski	37.2769	-89.1833
Г. jerlarum Р fowiamum	J1C2578	TINHC63333	EF4/2199 EF470165	1 2 2	GA TN	Plourt	33.8028	-83.4089
r. jerlarum D. foniaurum	J1C2393	TINEC03080	EF4/2103	123		Dioufit MaCrossian	33./304	-83.9/06
r. jeriarum	JIC2015	1 NHC03393	EF4/2182		KY MD	Anna America	3/.139/	-88./9/2
г. jertarum D. f. mim	J1C2/30	TINHC03524	EF4/2210			Anne Arundel	38.8283	-/0.5389
r. jeriarum	J1C2740 JTC2762	TNHC(2(0)	EF4/2194		AL	Chaster	34.3448	-80./039
г. jerlarum D. foniau	J1C2/62	TNHC66040	EF4/2195			Cnester	35.4392	-88.6414
r. jeriarum	JIC285/ MHD10700	1 INFLO00049	EF4/2211 EE470010		W V	Berkeley	39.4927	- 18.2112
r. jerlarum D. foriarian	WITE 10/00 D. Highton 50060	mnr10/00	EF4/2219 EE470166		INC TN	Plount	33.4133	-80.9/19
F. Jeriarum D. fowiamum	R. Highton (155)	II/a	EF4/2100		I IN SC	Korshow	22.0711	-03./989
г. jeriarum	K. Hightono1551	USINIM uncat.	EF4/2213		SC	rersnaw	34.4/82	-80.801/

Appendix A (continued)

Species	Field no.	Museum no.	GenBank No.	Test	State/Prov.	County/Twshp.	Latitude	Longitude
P. feriarum	R. Highton61673	USNM uncat.	EF472184		TN	Franklin	35.2031	-85.9211
P. feriarum	R. Highton62076	USNM uncat.	EF472213		PA	Fulton	40.0708	-77.8839
P. feriarum	R. Highton71758	R. Highton uncat.	EF472185		KY	Lincoln	37.4019	-84.8092
P. feriarum	R. Highton88-43	n/a	EF472164		TN	Anderson	36.1408	-84.1047
P. illinoensis	ECM0001	TNHC62351	AY291109*		AR	Clay	36.3308	-90.1090
P. illinoensis	ECM0090	TNHC62346	AY291110*		MO	Scott	37.0667	-89.5667
P. illinoensis	INHS2003.3	n/a	EF472008		IL	Cass	40.0175	-90.4242
P. illinoensis	INHS2003.9	n/a	EF472010		IL	Madison	38.7969	-90.0389
P. kalmi	ECM0162	TNHC62354	EF472224	123	MD	Kent	39.3122	-75.8485
P. kalmi	ECM1064	TNHC63671	EF472225	123	VA	Accomack	37.7501	-75.6663
P. kalmi	ECM1067	TNHC63674	EF472223	1	VA	Northampton	37.4749	-75.8583
P. kalmi	ECM1080	TNHC63135	EF472230	1	DE	Sussex	38.7459	-75.3809
P. kalmi	ECM1115 ³	TNHC63544	EF472226	123	NJ	Atlantic	39.4765	-74.7106
P. kalmi	JTC2738	TNHC63403	EF472227	1	MD	Wicomico	38.3215	-75.4499
P. kalmi	JTC2836	TNHC63546	EF472228	1	NJ	Burlington	39.9593	-74.5093
P. kalmi	NJ-I	KU289235	AY29108/*	1	MD	Kent	39.3122	-/5.8485
P. kalmi	R. Highton 6206/	USNM uncat.	EF4/2229	1	NJ	Salem	39.6834	-/5.4905
P. kalmi	R. Highton 62083	USNM uncat.	EF4/2222	1	DE	New Castle	39.7153	-/5.6259
P. maculata	03BEJ007	TNHC63622	EF4/2090		MIN	Cook	47.9105	-90.0075
P. maculata P. maculata	03EKH001	INHC03021 KU224560	EF4/2101			St. Louis	4/.0988	-93.0484
F. maculata	A-1	KU224300	A 1 291090*		K5 VS	Chavanna	39.0008	-93.2255
P. maculata	D-5 DCC2851	NU224336	A 1 291092		KS WI	Wood	39.7722	-101./994
P maculata	ECM0105	11/a TNHC62324	AV201081*		Ontario	Frontenac	44.4300	-90.0300
P maculata	ECM0204	TNHC62206	FE472123		KS	Filie	38 8357	-70.3000
P maculata	ECM0204 ECM0209	TNHC62389	EF472078		MN	Itasca	47 5000	-93.0000
P maculata	ECM0209	TNHC63365	EF472088		IA	Marion	41 3875	-92 9526
P maculata	ECM0634	TNHC63370	EF472000		IA	Warren	41 3375	-935570
P maculata	ECM0644	TNHC65773	EF472091	2	CO	Jackson	40 8348	-1065705
P. maculata	ECM0645	n/a	EF472089	-	MN	Ramsev	45.0051	-93.1011
P. maculata	ECM0652	TNHC65814	EF472093		WI	St. Croix	44.8614	-92.6236
P. maculata	ECM1140 ^B	TNHC65824	EF472100		WI	Bavfield	46.3941	-91.2938
P. maculata	ECM1156	TNHC63139	EF472094		ND	Ward	48.1817	-101.2924
P. maculata	ECM2099	n/a	EF472132		Alberta	Athabasca	54.6155	-113.3466
P. maculata	I-1	KU224624	AY291080*		СО	Gunnison	38.8221	-106.5744
P. maculata	I-2	KU224625	AY291083*		СО	Archuleta	37.2898	-106.9754
P. maculata	INDU214	n/a	EF472121		IN	Porter	41.6100	-87.2353
P. maculata	INHS1251	INHS18890	EF472127		IL	Cass	39.9242	-90.3904
P. maculata	INHS1267	INHS13035	EF472115		IL	Piatt	40.0114	-88.7261
P. maculata	INHS1372 ^F	INHS13057	EF472124		IL	Madison	38.8294	-90.0628
P. maculata	INHS1376	INHS13062	EF472122		IL	Jersey	39.0778	-90.5555
P. maculata	INHS203	INHS16769	EF472113		IL	Mercer	41.1031	-90.9339
P. maculata	JPB13421	CMN32633	EF472084	2	Manitoba	Churchill	58.7667	-94.1667
P. maculata	JPB22607 ^B	ROM uncat.	EF472081	2	Ontario	Fraleigh	48.4500	-89.2000
P. maculata	JRM4868	TNHC62405	EF472083		UT	Cache	42.0778	-111.7222
P. maculata	JTC2588	TNHC63697	EF472117		MO	Cole	38.5767	-92.1733
P. maculata	JTC2596	TNHC63699	EF472126	1 2 2	MO	Adaır	40.2540	-92.5821
P. maculata	JTC2600 ⁻	TNHC63702	EF4/2111	123	мо	Boone	39.0333	-92.3333
P. maculata	JTC2601	TNHC63425	EF4/2118		IA	Boone	41.9900	-93.8841
P. maculata	JTC2613	TNHC63423	EF4/2099	2	IA Ontenia	Allamakee	43.3621	-91.2264
P. maculata	JTC2030	TNHC03/04	EF4/2110	2	Ontario	Frontenac	44.5500	-/0.3333
P. maculata	JTC2045	TNHC03012	EF4/2112		MIN VS	Filimore	43.7208	-91.9767
P. maculata P. maculata	JTC2050 ITC2674	TNHC63304	EF4/2134 EE472120			Wilson Louise	37.3007	-95./555
P maculata	JTC2074 ITC2687	TNHC63717	EF472120 EF472120	2	Ontario	Wellington	41.0997	80 4030
P maculata	JTC2698	TNHC63428	EF472125	2		Butler	42.6382	-92 6233
P maculata	ITC2700	TNHC65819	EF472079	123	SD	Lawrence	44 4060	-103 9573
P maculata	JTC2706	TNHC63146	EF472086	1 4 3	CO	Weld	40 4233	-1047086
P. maculata	JTC2708 ^C	TNHC63430	EF472098		IA	Howard	43 2130	-92 4899
P. maculata	JTC2760	TNHC63552	EF472095		OK	Washington	36 8836	-95 9259
P. maculata	JTC2805	TNHC63752	EF472128		IL IL	Effingham	39,1235	-88.6194
P. maculata	JTC2832	TNHC63554	EF472114		OK	Cherokee	36.0895	-94.8505
P. maculata	JTC2843	TNHC63733	EF472097		IL	McDonough	40.3325	-90.6046
P. maculata	JTC2862	TNHC63543	EF472119		NE	Douglas	41.2586	-95.9378
P. maculata	K-2 ^F	n/a	AY291088*		KS	Kingman	37.6458	-98.1133
							(continued o	n next page)

Appendix A (continued)

Species	Field no.	Museum no.	GenBank No.	Test	State/Prov.	County/Twshp.	Latitude	Longitude
P. maculata	MHP 8159	MHP8159	EF472130		KS	Cherokee	37.1692	-94.8441
P. maculata	MHP10265	MHP10265	EF472133		MO	Dade	37.3897	-93.9138
P. maculata	MHP10268	MHP10268	EF472131		MO	Newton	36.9416	-94.1717
P. maculata	MHP10467	MHP10467	EF472135		MO	Christian	37.0265	-93.4604
P. maculata	N-5	KU224630	AY291089*		NM	McKinley	36.0023	-108.8162
P. maculata	R-1	KU290342	AY291082*	2	Ontario	Lac Seul	50.6333	-93.2167
P. maculata	UMN14283 ^C	JFBM14283	EF472082		MN	Wright	45.3194	-93.9417
P. maculata	UMN14285	JFBM14285	EF472110		MN	Rock	43.7917	-96.2667
P. maculata	UMN14316	JFBM14316	EF472096		MN	Lac qui Parle	45.0417	-95.9167
P. maculata	UMN14327	JFBM14327	EF472087		ND	Pembina	48.9861	-97.5544
P. maculata	UMN14336 ^D	JFBM14336	EF472085	123	MN	Otter Tail	46.4583	-95.7056
P. nigrita	ECM0024	TNHC62364	AY291079*	3	FL	Brevard	28.2006	-80.8678
P. nigrita	ECM0036	TNHC62201	AY291078*	3	AL	Barbour	32.0369	-85.0889
P. nigrita	ECM0087	TNHC62208	AY291076*	123	SC	Barnwell	33.3177	-81.4840
P. nigrita	ECM0215	TNHC63210	EF472039		FL	Calhoun	30.4477	-85.0922
P. nigrita	ECM0242	TNHC63187	EF472045	123	FL	Liberty	30.1626	-85.0666
P. nigrita	ECM0261 <i>e</i>	TNHC63585	EF472052		MS	Harrison	30.5010	-88.9084
P. nigrita	ECM0290	TNHC63593	EF472040	3	MS	Harrison	30.5010	-88.9084
P. nigrita	ECM0359	TNHC63191	EF472050		FL	Liberty	30.1437	-84.9766
P. nigrita	ECM0371	TNHC63200	EF472049		FL	Franklin	29.7035	-85.1901
P. nigrita	ECM0372	TNHC63201	EF472042	3	FL	Jefferson	30.1981	-84.0500
P. nigrita	ECM0422	TNHC63345	EF472043		GA	Baker	31.2380	-84.5017
P. nigrita	ECM0442	TNHC63538	EF472041	3	SC	Dorchester	33.0956	-80.3156
P. nigrita	ECM0482 <i>\phi</i>	TNHC62399	EF472231		VA	York	37.1779	-76.5007
P. nigrita	ECM0603	TNHC63354	EF472046		GA	Liberty	31.8470	-81.5960
P. nigrita	ECM0609	TNHC63658	EF472044	123	VA	Prince George	37.1229	-77.1094
P. nigrita	ECM0666	TNHC63662	EF472048		VA	Sussex	36.8921	-77.0628
P. nigrita	ECM1097	TNHC63664	EF472047		VA	Surrey	36.9277	-77.0406
P. nigrita	ECM1801	TNHC65785	EF472051	3	GA	McIntosh	31.5343	-81.5376
P. nigrita	FC11452	MVZ145452 ^c	AY291077*	3	NC	Scotland	34.7739	-79.4631
P. ocularis	ECM0045	TNHC62234	AY291097*		SC	Barnwell	33.1606	-81.6908
P. ocularis	ECM0095	TNHC62241	AY291098*		FL	Gulf	29.6801	-85.3287
P. ornata	ECM0033	TNHC62178	AY291106*		AL	Barbour	32.0369	-85.0889
P. ornata	ECM0055	TNHC62183	AY291105*	123	SC	Aiken	33.2167	-81.7500
P. regilla	ECM0147	TNHC62195	EF472005	123	CA	San Bernardino	34.1132	-117.1422
P. sp. nov.	ASUMZ27608	ASUMZ27608	EF472058	3	AR	Conway	35.1508	-92.7439
P. sp. nov.	ASUMZ27611	ASUMZ27611	EF472057		AR	Yell	35.0003	-93.4167
P. sp. nov.	ASUMZ27612	ASUMZ27612	EF472056		AR	Sebastian	35.3858	-94.3983
P. sp. nov.	ECM0011	TNHC62255	AY291086*	123	AR	Craighead	35.8546	-90.6626
P. sp. nov.	ECM0029	TNHC62265	AY291085*	123	LA	East Baton Rouge	30.6889	-90.8894
P. sp. nov.	ECM0124	TNHC62269	EF472066		LA	Washington	30.6787	-89.9480
P. sp. nov.	ECM0137	TNHC62277	EF472064		LA	Evangeline	30.7801	-92.2819
P. sp. nov.	ECM0139	TNHC62384	EF472060	3	LA	Beauregard	30.7821	-93.0143
P. sp. nov.	ECM0258	TNHC63598	EF472054	3	MS	Simpson	31.9682	-90.1125
P. sp. nov.	ECM0259	TNHC63599	EF472069		MS	Simpson	31.9274	-90.0544
P. sp. nov.	ECM0260	TNHC63600	EF472053		MS	Marion	31.2358	-89.8228
P. sp. nov.	ECM0264	TNHC63480	EF472068		LA	St.Tammany	30.5655	-89.8715
P. sp. nov.	ECM0268	TNHC63483	EF472059		LA	St.Tammany	30.3840	-89.7554
P. sp. nov.	ECM0270	TNHC63380	EF472055		AR	Perry	34.8916	-92.8044
P. sp. nov.	ECM0332	TNHC63609	EF472067		MS	Hancock	30.4399	-89.6576
P. sp. nov.	ECM1155	TNHC63496	EF472061	3	LA	Red River	32.1649	-93.4799
P. sp. nov.	ECM2293	TNHC65744	EF472075		TX	Jasper	30.2577	-94.2141
P. sp. nov.	ECM2294	TNHC65745	EF472076		TX	Liberty	30.4451	-94.7405
P. sp. nov.	ECM2295	TNHC65746	EF472077	3	TX	Liberty	30.3517	-95.0632
P. sp. nov.	ECM2437	TNHC65022	EF472074		LA	St. Martin	30.3309	-91.6964
P. sp. nov.	JTC2586	TNHC63583	EF472062	123	TX	Lamar	33.7803	-95.5353
P. sp. nov.	JTC2737	TNHC63551	EF472072	3	OK	Osage	36.5356	-96.0507
P. sp. nov.	JTC2829	TNHC63703	EF472071		MO	Ripley	36.7069	-90.6938
P. sp. nov.	JTC2847	TNHC63556	EF472070	3	OK	Pittsburg	34.9927	-95.8385
P. sp. nov.	JTC2860	TNHC63557	EF472065		OK	Love	34.1330	-97.1062
P. sp. nov.	JTC2866	TNHC63559	EF472063		OK	McCurtain	34.1405	-94.6958
P. sp. nov.	R. Highton71204	R. Highton uncat.	EF472073		OK	LeFlore	34.7107	-94.5497
P. streckeri	JTC2581	TNHC63382	EF472009		AR	Conway	35.2503	-92.6833
P. streckeri	P-2	TNHC62317	AY291108*		ТХ	Travis	30.3218	-97.8034

Appendix A (continued)

Species	Field no.	Museum no.	GenBank No.	Test	State/Prov.	County/Twshp.	Latitude	Longitude
P. triseriata	ECM0615	TNHC63682	EF472146	2	MI	Ingham	42.7222	-84.4275
P. triseriata	ECM0616	TNHC63683	EF472155	1	MI	Ingham	42.6890	-84.2830
P. triseriata	ECM0662	n/a	EF472142	2	Ontario	Essex	42.1216	-82.9715
P. triseriata	INHS1207	INHS18840	EF472138		IL	Perry	38.0188	-89.4181
P. triseriata	INHS1234	INHS18853	EF472136	2	IL	Lawrence	38.7128	-87.6768
P. triseriata	INHS1239	INHS18857	EF472153	1	IL	Saline	37.7358	-88.6941
P. triseriata	INHS1581	INHS19242	EF472159	2	IL	Wayne	38.5257	-88.3456
P. triseriata	J-1	KU289219	AY291091*	12	MI	Berrien	41.9500	-86.4167
P. triseriata	JTC2590	TNHC63412	EF472151	12	OH	Logan	40.4614	-83.6700
P. triseriata	JTC2594	TNHC63392	EF472139		KY	Daviess	37.8661	-87.2855
P. triseriata	JTC2604	TNHC63405	EF472144		OH	Highland	39.2124	-83.8362
P. triseriata	JTC2605	TNHC63408	EF472149	2	OH	Clinton	39.2599	-83.8828
P. triseriata	JTC2607	TNHC63410	EF472148	2	OH	Preble	39.6478	-84.5272
P. triseriata	JTC2611	TNHC63687	EF472137	13	TN	Montgomery	36.4501	-87.4767
P. triseriata	JTC2639	TNHC63691	EF472156	12	NY	Niagara	43.1706	-78.6906
P. triseriata	JTC2678 ^G	TNHC63708	EF472141	2	Ontario	Halton	43.6500	-79.9167
P. triseriata	JTC2679 ^G	TNHC63709	EF472140	2	Ontario	Oxford	42.9089	-80.8341
P. triseriata	JTC2682	TNHC63712	EF472145	123	Ontario	Niagara R.M.	43.0085	-79.5393
P. triseriata	JTC2690 ^G	TNHC63720	EF472143	12	Ontario	Waterloo R.M.	43.2984	-80.3735
P. triseriata	JTC2709	TNHC63394	EF472147	2	KY	Jefferson	38.1111	-85.8703
P. triseriata	JTC2715	TNHC65812	EF472157		KY	Breckinridge	37.6495	-86.4241
P. triseriata	JTC2723	TNHC63510	EF472154		IN	Jennings	38.9848	-85.6094
P. triseriata	JTC2830	TNHC63517	EF472150	2	IN	Delaware	40.0400	-85.3000
P. triseriata	JTC2848	TNHC63694	EF472152	2	NY	Livingston	42.9377	-77.7739
P. triseriata	JTC2851	TNHC63518	EF472158	1	IN	Marion	39.8641	-86.2904
P. triseriata	R. Highton69234	R. Highton uncat.	EF472160	123	IN	Posey	38.1298	-87.9350

^a R. Highton71747 was labeled as *Pseudacris feriarum* in Moriarty and Cannatella (2004); according to R. Highton (personal communication), who collected the specimen, this specimen is morphologically and acoustically a *P. brachyphona*. However, its mitochondrial DNA suggests that this individual is a hybrid between the two species.

^b TNHC62369 is from Lake Co. not Ocala Co., as reported in Moriarty and Cannatella (2004).

^c MVZ145452 was mislabeled in Moriarty and Cannatella (2004) as MVZ11452.

References

- Akaike, H., 1974. A new look at statistical model identification. IEEE Trans. Automat. Control 19, 716–723.
- Bleakney, S., 1959. Postglacial dispersal of the western chorus frog in eastern Canada. Can. Field Nat. 73, 197–205.
- Brandt, B.B., Walker, C.F., 1933. A new species of *Pseudacris* from the southeastern United States. Occas. Pap. Mus. Zool., Univ. Michigan 272, 1–7.
- Conant, R., Collins, J.T., 1998. Peterson Field Guide to Reptiles and Amphibians of Eastern and Central North America. Houghton-Mifflin Company, Boston.
- Cook, F.R., 1964. Additional records and a correction of the type locality for the boreal chorus frog in northwestern Ontario. Can. Field Nat. 78, 186–192.
- Corn, P.S., Stolzenburg, W., Bury, R.B., 1989. Acid precipitation studies in Colorado and Wyoming: Interim report of surveys of montane amphibians and water chemistry. Biological Report 80(40.26). U.S. Fish and Wildlife Service. Air Pollution and Acid Rain Report No. 26.
- Daszak, P., Berger, L., Cunningham, A.A., Hyatt, A.D., Green, D.E., Speare, R., 1999. Emerging infectious diseases and amphibian population declines. Emerg. Infect. Dis. 5, 735–748.
- Denton, G.H., Hughes, T.J., 1981. The Last Great Ice Sheets. John Wiley and Sons, New York.
- Fisher, R.N., Shaffer, H.B., 1996. The decline of amphibians in California's Great Central Valley. Conserv. Biol. 10, 1387–1397.
- Fouquette, M.J., 1975. Speciation in chorus frogs I. Reproductive character displacement in the *Pseudacris nigrita* complex. Syst. Zool. 24, 16–22.
- Frost, D.R., 2006. Amphibian Species of the World: an online reference. Version 4 (17 August 2006). American Museum of Natural History,

New York, USA. Available from: http://research.amnh.org/herpetology/amphibia/index.php>.

- Gartside, D.F., 1980. Analysis of a hybrid zone between chorus frogs of the *Pseudacris nigrita* complex in the southern United States. Copeia 1980, 56–66.
- Gibbard, P.T., Van Kolfschoten, T., 2004. The pleistocene and holocene epochs. In: Gradstein, F.M., Ogg, J.G., Smith, A.G. (Eds.), A Geologic Time Scale 2004. University Press, Cambridge, pp. 441–452.
- Gibbs, J.P., Whiteleather, K.K., Schueler, F.W., 2005. Changes in frog and toad populations over 30 years in New York state. Ecol. Appl. 15, 1148–1157.
- Gray, R.H., Brown, L.E., 2005. Decline of the northern cricket frogs (Acris crepitans). In: Lannoo, M. (Ed.), Amphibian Declines: The Conservation Status of United States Species. University of California Press, Berkeley, CA, pp. 47–54.
- Hedges, S.B., 1986. An electrophoretic analysis of holarctic hylid frog evolution. Syst. Zool. 35, 1–21.
- Hobson, C.S., Moriarty, E.C., 2003. Pseudacris nigrita nigrita geographic distribution record. Herpetol. Rev. 34, 259–260.
- Howard, D.J., 1993. Reinforcement: origin, dynamics, and fate of an evolutionary hypothesis. In: Harrison, R.G. (Ed.), Hybrid Zones and the Evolutionary Process. Oxford University Press, Oxford, pp. 46–69.
- Jancovich, J.K., Davidson, E.W., Seiler, A., Jacobs, B.L., 2001. Transmission of the *Ambystoma tigrinum* virus to alternative hosts. Dis. Aquat. Organ. 46, 159–163.
- Kramer, D.C., 1973. Movements of western chorus frogs *Pseudacris* triseriata triseriata tagged with Co⁶⁰. J. Herpetol. 7, 231–235.
- Kramer, D.C., 1974. Home range of the western chorus frog *Pseudacris* triseriata triseriata. J. Herpetol. 8, 245–246.

- Lannoo, M., 2005. Amphibian Declines: The Conservation Status of United States Species. University of California Press, Berkeley, California.
- Lemmon, A.R., Moriarty, E.C., 2004. The importance of proper model assumption in Bayesian phylogenetics. Syst. Biol 53, 265–277.
- Lemmon, E.M., Lemmon, A.R., and Cannatella, D.C., in press. Geological and climatic forces driving speciation in the continentally distributed trilling chorus frogs (*Pseudacris*). Evolution.
- Lips, K.R., Brem, F., Brenes, R., Reeve, J.D., Alford, R.A., Voyles, J., Carey, C., Livo, L., Pessier, A.P., Collins, J.P., 2006. Emerging infectious disease and the loss of biodiversity in a neotropical amphibian community. Proc. Natl. Acad. Sci. USA 103, 3165–3170.
- Maddison, D.R., Maddison, W.P., 2005. MacClade 4: Analysis of Phylogeny and Character Evolution. Version 4.08. Sinauer, Sunderland, MA.
- Mecham, J.S., 1965. Genetic relationships and reproductive isolation in southeastern frogs of the genera *Pseudacris* and *Hyla*. Am. Midl. Nat. 74, 269–308.
- Michaud, T.C., 1964. Vocal variation in two species of chorus frogs, *Pseudacris nigrita* and *Pseudacris clarki*, in Texas. Evolution 18, 498–506.
- Moriarty, E.C., Cannatella, D.C., 2004. Phylogenetic relationships of the North American chorus frogs. Mol. Phylogenet. Evol. 30, 409–420.

Neill, W.T., 1949. The status of Baird's chorus-frog. Copeia 1949, 227-228.

- Picard, I., Desroches, J-F., 2004. Situation de la Rainette Faux-grillon de l'Ouest (*Pseudacris triseriata*) en Montérégie, Inventaire printanier 2004. En collaboration avec le Centre d'information sur l'environnement de Longueuil (CIEL). Longueuil, Québec, 50pp.
- Platz, J.E., Forester, D.C., 1988. Geographic variation in mating call among the four subspecies of the chorus frog: *Pseudacris triseriata* (Wied). Copeia 1988, 1062–1066.
- Platz, J.E., 1989. Speciation within the chorus frog *Pseudacris triseriata*: morphometric and mating call analyses of the boreal and western subspecies. Copeia 1989, 704–712.
- Pollio, C.A., Kilpatrick, S.L., 2002. Status of *Pseudacris feriarum* in Prince William Forest Park, Prince William County, Virginia. Bull. Maryland Herpetol. Soc. 38, 55–61.
- Posada, D., Crandall, K.A., 1998. MODELTEST: testing the model of DNA substitution. Bioinformatics 14, 817–818.
- Recuero, E., Martínez-Solano, Í., Parra-Olea, G., García-París, M., 2006. Phylogeography of *Pseudacris regilla* (Anura: Hylidae) in western North America, with a proposal for a new taxonomic rearrangement. Mol. Phylogenet. Evol. 39, 293–304.

- Reeder, A.L., Ruiz, M.O., Pessier, A., Brown, L.E., Levengood, J.M., Phillips, C.A., Wheeler, M.B., Warner, R.E., Beasley, V.R., 2005. Intersexuality and the cricket frog decline: historic and geographic trends. Environ. Health Perspect. 113, 261–265.
- Ronquist, F., Huelsenbeck, J.P., 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19, 1572–1574.
- Rorabaugh, J.C., 2005. *Rana pipiens*. In: Lannoo, M. (Ed.), Amphibian Declines: The Conservation Status of United States Species. University of California Press, Berkeley, CA, pp. 570–577.
- Schwartz, A., 1957. Chorus frogs (*Pseudacris nigrita* LeConte) in South Carolina. Am. Mus. Nov. 1838, 1–12.
- Sias, J., 2006. Natural history and distribution of the upland chorus frog, *Pseudacris feriarum* Baird, in West Virginia. Unpublished master's thesis. Marshall University, West Virginia.
- Smith, H.M., 1934. The amphibians of Kansas. Am. Midl. Nat. 15, 377– 527.
- Smith, P.W., Smith, D.M., 1952. The relationship of the chorus frogs, P. nigrita feriarum and Pseudacris n. triseriata. Am. Midl. Nat. 48, 165– 180.
- Smith, P.W., 1956. The status, correct name, and geographic range of the boreal chorus frog. Proc. Biol. Soc. Washington 69, 169–176.
- Smith, P.W., 1957. An analysis of post-Wisconsin biogeography of the Prairie Peninsula region based on distributional phenomena among terrestrial vertebrate populations. Ecology 38, 205–218.
- Smith, S.A., Stephens, P.R., Wiens, J.J., 2005. Replicate patterns of species richness, historical biogeography, and phylogeny in Holarctic treefrogs. Evolution 59, 2433–2450.
- Thompson, J.D., Gibson, T.J., Plewniak, F., Jeanmougin, F., Higgins, D.G., 1997. The CLUSTAL X windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res. 25, 4876–4882.
- Walker, C.F., 1932. Pseudacris brachyphona (Cope), a valid species. Ohio J. Sci. 32, 379–384.
- Weeber, R.C., Vallianatos, M., 2000. The Marsh Monitoring Program. 1995–1999: Monitoring the Great Lakes Wetland and their amphibian and bird inhabitants. Published by Bird Studies Canada in cooperation with Environment Canada and the US Environmental Protection Agency. 47 pp.
- Wright, A.H., Wright, A.A., 1949. Handbook of Frogs and Toads of the United States and Canada. Comstock Publishing Company Inc., Ithaca, NY.